cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A360486 Convolution of A000041 and A000290.

Original entry on oeis.org

0, 1, 5, 15, 36, 76, 147, 267, 462, 769, 1240, 1947, 2988, 4496, 6649, 9683, 13909, 19734, 27686, 38447, 52892, 72138, 97604, 131084, 174835, 231687, 305173, 399687, 520675, 674865, 870540, 1117869, 1429298, 1820018, 2308521, 2917260, 3673428, 4609885, 5766245
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 09 2023

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> add(combinat[numbpart](n-j)*j^2, j=0..n):
    seq(a(n), n=0..42);  # Alois P. Heinz, Feb 09 2023
  • Mathematica
    Table[Sum[PartitionsP[k]*(n-k)^2, {k, 0, n}], {n, 0, 60}]
    CoefficientList[Series[x*(1+x) / ((1-x)^3 * QPochhammer[x]), {x, 0, 60}], x]
  • PARI
    a(n) = sum(k=0, n, numbpart(k)*(n-k)^2); \\ Michel Marcus, Feb 09 2023

Formula

a(n) = Sum_{k=0..n} A000041(k) * (n-k)^2.
G.f.: x*(1+x)/(1-x)^3 * Product_{k>=1} 1/(1 - x^k).
a(n) ~ 3 * sqrt(2*n) * exp(sqrt(2*n/3)*Pi) / Pi^3.
Showing 1-1 of 1 results.