cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360573 Odd numbers with exactly three zeros in their binary expansion.

Original entry on oeis.org

17, 35, 37, 41, 49, 71, 75, 77, 83, 85, 89, 99, 101, 105, 113, 143, 151, 155, 157, 167, 171, 173, 179, 181, 185, 199, 203, 205, 211, 213, 217, 227, 229, 233, 241, 287, 303, 311, 315, 317, 335, 343, 347, 349, 359, 363, 365, 371, 373, 377, 399, 407, 411, 413
Offset: 1

Views

Author

Bernard Schott, Feb 12 2023

Keywords

Comments

If m is a term then 2*m+1 is another term, since if M is the binary expansion of m, then M.1 where . stands for concatenation is the binary expansion of 2*m+1.
A052996 \ {1,3,8} is a subsequence, since for m >= 3, A052996(m) = 9*2^(m-2) - 1 has 100011..11 with m-2 trailing 1 for binary expansion.
A171389 \ {20} is a subsequence, since for m >= 1, A171389(m) = 21*2^m - 1 has 1010011..11 with m trailing 1 for binary expansion.
A198276 \ {18} is a subsequence, since for m >= 1, A198276(m) = 19*2^m - 1 has 1001011..11 with m trailing 1 for binary expansion.
Binary expansion of a(n) is A360574(n).
{8*a(n), n>0} form a subsequence of A353654 (numbers with three trailing 0 bits and three other 0 bits).
Numbers of the form 2^(a+1) - 2^b - 2^c - 2^d - 1 where a > b > c > d > 0. - Robert Israel, Feb 13 2023

Examples

			35_10 = 100011_2, so 35 is a term.
		

Crossrefs

Subsequences: A052996 \ {1,3,8}, A171389 \ {20}, A198276 \ {18}.
Odd numbers with k zeros in their binary expansion: A000225 (k=0), A190620 (k=1), A357773 (k=2), this sequence (k=3).

Programs

  • Maple
    q:= n-> n::odd and add(1-i, i=Bits[Split](n))=3:
    select(q, [$1..575])[];  # Alois P. Heinz, Feb 12 2023
    # Alternative:
    [seq(seq(seq(seq(2^(a+1) - 2^b - 2^c - 2^d - 1, d = c-1..1,-1), c=b-1..2,-1),b=a-1..3,-1),a=4..12)]; # Robert Israel, Feb 13 2023
  • Mathematica
    Select[Range[1, 500, 2], DigitCount[#, 2, 0] == 3 &] (* Amiram Eldar, Feb 12 2023 *)
  • PARI
    isok(m) = (m%2) && #select(x->(x==0), binary(m)) == 3; \\ Michel Marcus, Feb 13 2023
  • Python
    def ok(n): return n&1 and bin(n)[2:].count("0") == 3
    print([k for k in range(414) if ok(k)]) # Michael S. Branicky, Feb 12 2023
    
  • Python
    from itertools import count, islice
    from sympy.utilities.iterables import multiset_permutations
    def A360573_gen(): # generator of terms
        yield from (int('1'+''.join(d)+'1',2) for l in count(0) for d in  multiset_permutations('000'+'1'*l))
    A360573_list = list(islice(A360573_gen(),54)) # Chai Wah Wu, Feb 18 2023
    
  • Python
    from itertools import combinations, count, islice
    def agen(): yield from ((1<Michael S. Branicky, Feb 18 2023
    
  • Python
    from math import comb, isqrt
    from sympy import integer_nthroot
    def A056557(n): return (k:=isqrt(r:=n+1-comb((m:=integer_nthroot(6*(n+1), 3)[0])-(nA333516(n): return (r:=n-1-comb((m:=integer_nthroot(6*n, 3)[0])+(n>comb(m+2, 3))+1, 3))-comb((k:=isqrt(m:=r+1<<1))+(m>k*(k+1)), 2)+1
    def A360010(n): return (m:=integer_nthroot(6*n, 3)[0])+(n>comb(m+2, 3))
    def A360573(n):
        a = (a2:=integer_nthroot(24*n, 4)[0])+(n>comb(a2+2, 4))+3
        j = comb(a-1,4)-n
        b, c, d = A360010(j+1)+2, A056557(j)+2, A333516(j+1)
        return (1<Chai Wah Wu, Dec 18 2024
    

Formula

A023416(a(n)) = 3.
Let a = floor((24n)^(1/4))+4 if n>binomial(floor((24n)^(1/4))+2,4) and a = floor((24n)^(1/4))+3 otherwise. Let j = binomial(a-1,4)-n. Then a(n) = 2^a-1-2^(A360010(j+1)+2)-2^(A056557(j)+2)-2^(A333516(j+1)). - Chai Wah Wu, Dec 18 2024