cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360638 Number of sets of nonempty words over binary alphabet where each letter occurs n times.

Original entry on oeis.org

1, 3, 16, 100, 593, 3497, 20316, 116378, 658214, 3679450, 20350028, 111459648, 605060633, 3257784589, 17408647968, 92378535290, 487031130699, 2552197485757, 13298890952222, 68930923717598, 355507581655752, 1824924721216084, 9326440815314046, 47464093855706540
Offset: 0

Views

Author

Alois P. Heinz, Feb 14 2023

Keywords

Examples

			a(0) = 1: {}.
a(1) = 3: {ab}, {ba}, {a,b}.
a(2) = 16: {aabb}, {abab}, {abba}, {baab}, {baba}, {bbaa}, {a,abb}, {a,bab}, {a,bba}, {aa,bb}, {aab,b}, {ab,ba}, {aba,b}, {b,baa}, {a,ab,b}, {a,b,ba}.
		

Crossrefs

Cf. A080277, A360626 (the same for multisets), A360634.

Programs

  • Maple
    g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
          g(n, i-1, j-k)*x^(i*k)*binomial(binomial(n, i), k), k=0..j))))
        end:
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
         `if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i))))
        end:
    a:= n-> coeff(b(2*n$2), x, n):
    seq(a(n), n=0..31);
  • Mathematica
    g[n_, i_, j_] := g[n, i, j] = Expand[If[j == 0, 1, If[i < 0, 0, Sum[
        g[n, i - 1, j - k]*x^(i*k)*Binomial[Binomial[n, i], k], {k, 0, j}]]]];
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1,
        If[i < 1, 0, Sum[b[n - i*j, i - 1]*g[i, i, j], {j, 0, n/i}]]]];
    a[n_] := Coefficient[b[2n, 2n], x, n];
    Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Dec 09 2023, after Alois P. Heinz *)

Formula

a(n) = A360634(2n,n).
a(n) mod 2 = 1 <=> n in { A080277 } U {0}.