cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360671 Number of multisets whose right half (inclusive) sums to n.

Original entry on oeis.org

1, 2, 5, 8, 16, 21, 42, 51, 90, 121, 185, 235, 386, 465, 679, 908, 1261, 1580, 2238, 2770, 3827, 4831, 6314, 7910, 10619, 13074, 16813, 21049, 26934, 33072, 42445, 51679, 65264, 79902, 99309, 121548, 151325, 182697, 224873, 272625, 334536, 401999, 491560, 588723
Offset: 0

Views

Author

Gus Wiseman, Mar 09 2023

Keywords

Examples

			The a(0) = 1 through a(4) = 16 multisets:
  {}  {1}    {2}        {3}            {4}
      {1,1}  {1,2}      {1,3}          {1,4}
             {2,2}      {2,3}          {2,4}
             {1,1,1}    {3,3}          {3,4}
             {1,1,1,1}  {1,1,2}        {4,4}
                        {1,1,1,2}      {1,1,3}
                        {1,1,1,1,1}    {1,2,2}
                        {1,1,1,1,1,1}  {2,2,2}
                                       {1,1,1,3}
                                       {1,1,2,2}
                                       {1,2,2,2}
                                       {2,2,2,2}
                                       {1,1,1,1,2}
                                       {1,1,1,1,1,2}
                                       {1,1,1,1,1,1,1}
                                       {1,1,1,1,1,1,1,1}
For example, the multiset y = {1,1,1,1,2} has right half (inclusive) {1,1,2}, with sum 4, so y is counted under a(4).
		

Crossrefs

The exclusive version is A360673.
Column sums of A360675 with rows reversed.
The case of sets is A360955, exclusive A360954.
The even-length case is A360956.
A360672 counts partitions by left sum (exclusive).
A360679 gives right sum (inclusive) of prime indices.

Programs

  • Mathematica
    Table[Length[Select[Join@@IntegerPartitions/@Range[0,3*k], Total[Take[#,Ceiling[Length[#]/2]]]==k&]],{k,0,15}]
  • PARI
    seq(n)={my(s=1 + O(x*x^n), p=s); for(k=1, n, s += p*x^k*(2-x^k)/(1-x^k + O(x*x^(n-k)))^(k+1); p /= 1 - x^k); Vec(s)} \\ Andrew Howroyd, Mar 11 2023

Formula

G.f.: 1 + Sum_{k>=1} x^k*(2 - x^k)/((1 - x^k)^(k+1) * Product_{j=1..k-1} (1-x^j)). - Andrew Howroyd, Mar 11 2023

Extensions

Terms a(24) and beyond from Andrew Howroyd, Mar 11 2023