A360694 Numbers whose divisors can be partitioned into two disjoint sets where the sum of both sets is prime.
4, 6, 8, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 48, 52, 54, 55, 56, 57, 58, 60, 63, 65, 66, 68, 69, 70, 72, 75, 76, 77, 78, 80, 82, 84, 85, 86, 88, 90, 92, 93, 94, 95, 96, 99, 102, 104, 105, 106, 108, 110, 111, 112, 114, 115
Offset: 1
Keywords
Examples
4 belongs to the sequence, since its divisors can be partitioned into two sets where the sums of these sets are primes (2,5). 9 does not belong to the sequence, because its divisors cannot be partitioned in this way.
References
- Song Y. Yan, Perfect, Amicable and Sociable Numbers, World Scientific Pub Co Inc., 1996, p. 11, p. 22.
Links
- Yuejian Peng and K. P. S. Bhaskara Rao, On Zumkeller numbers, Journal of Number Theory, Volume 133, Issue 4, April 2013, pp. 1135-1155
- Eric Weisstein's World of Mathematics, Perfect Number.
- Eric Weisstein's World of Mathematics, Prime.
Programs
-
Maple
filter:= proc(n) local P,p,S,s; S:= numtheory:-divisors(n); s:= convert(S,`+`); P:= combinat:-subsets(S minus {n}); while not P[finished] do p:= convert(P[nextvalue](),`+`); if isprime(p) and isprime(s-p) then return true fi od; false end proc: select(filter, [$1..200]); # Robert Israel, Feb 21 2023
-
Mathematica
q[n_] := Module[{d = Divisors[n], s, p}, s = Total[d]; p = Position[Rest @ CoefficientList[Product[1 + x^i, {i, d}], x], ?(# > 0 &)] // Flatten; AnyTrue[p, PrimeQ[#] && PrimeQ[s - #] &]]; Select[Range[100], q] (* _Amiram Eldar, Feb 18 2023 *)
Comments