A360702 Number of sets of 2n words of length 2n over binary alphabet where each letter occurs 2n^2 times.
1, 2, 394, 10247250, 41192135957378, 26708408307353573010350, 3044454667114388718324075325130428, 65233919825974729088553743803268484284650384722, 275236371094876077407367002758415347571615535684540339803854604
Offset: 0
Keywords
Examples
a(0) = 1: {}. a(1) = 2: {aa,bb}, {ab,ba}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..30
Programs
-
Maple
g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add( g(n, i-1, j-k)*x^(i*k)*binomial(binomial(n, i), k), k=0..j)))) end: a:= n-> coeff(g(2*n$3), x, 2*n^2): seq(a(n), n=0..10);
Formula
a(n) = A360693(2n,2n^2).
Comments