cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360721 a(n) is the number of infinitary divisors of n that are powerful (A001694).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Feb 18 2023

Keywords

Crossrefs

Similar sequences: A005361 (number of powerful divisors), A323308 (number of unitary powerful divisors).

Programs

  • Mathematica
    f[p_, e_] := 2^DigitCount[e, 2, 1] - Mod[e, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, 2^hammingweight(f[i, 2]) - f[i, 2]%2);}

Formula

Multiplicative with a(p^e) = 2^A000120(e) - (e mod 2).
a(n) <= A037445(n) with equality if and only if n is a square.
a(n) <= A005361(n) with equality if and only if n is not in A360723.
Sum_{k=1..n} a(k) ~ c * n, where c = Product_{p prime} ((1-1/p) * Sum_{k>=1} ((2^A000120(k)- k mod 2)/p^k)) = 1.72717... .