cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A360732 Expansion of Sum_{k>0} (k * x * (1 + (k * x)^k))^k.

Original entry on oeis.org

1, 5, 27, 288, 3125, 48907, 823543, 17039360, 387479538, 10048828125, 285311670611, 8929262337009, 302875106592253, 11116754387067959, 437894195556640625, 18448995890703106048, 827240261886336764177, 39347760450413560593753
Offset: 1

Views

Author

Seiichi Manyama, Feb 18 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^n * Binomial[#, n/# - 1] &]; Array[a, 20] (* Amiram Eldar, Aug 09 2023 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k*x*(1+(k*x)^k))^k))
    
  • PARI
    a(n) = sumdiv(n, d, d^n*binomial(d, n/d-1));

Formula

a(n) = Sum_{d|n} d^n * binomial(d,n/d-1).
If p is an odd prime, a(p) = p^p.

A360755 Expansion of (1/2) * Sum_{k>0} (2 * x * (1 + x^k))^k.

Original entry on oeis.org

1, 3, 4, 12, 16, 46, 64, 160, 268, 592, 1024, 2292, 4096, 8640, 16544, 33824, 65536, 133856, 262144, 529576, 1049920, 2108416, 4194304, 8417408, 16777296, 33607680, 67118080, 134334656, 268435456, 537140208, 1073741824, 2148015104, 4295023616, 8591048704
Offset: 1

Views

Author

Seiichi Manyama, Feb 19 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 2^(#-1) * Binomial[#, n/# - 1] &]; Array[a, 35] (* Amiram Eldar, Aug 02 2023 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (2*x*(1+x^k))^k)/2)
    
  • PARI
    a(n) = sumdiv(n, d, 2^(d-1)*binomial(d, n/d-1));

Formula

a(n) = Sum_{d|n} 2^(d-1) * binomial(d,n/d-1).
If p is an odd prime, a(p) = 2^(p-1).
Showing 1-2 of 2 results.