cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A360726 Expansion of Sum_{k>0} (k * x * (1 + x^k))^k.

Original entry on oeis.org

1, 5, 27, 264, 3125, 46741, 823543, 16778240, 387420570, 10000015625, 285311670611, 8916100729755, 302875106592253, 11112006831322817, 437893890380890625, 18446744073843770368, 827240261886336764177, 39346408075300025059665
Offset: 1

Views

Author

Seiichi Manyama, Feb 18 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^# * Binomial[#, n/# - 1] &]; Array[a, 20] (* Amiram Eldar, Aug 02 2023 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k*x*(1+x^k))^k))
    
  • PARI
    a(n) = sumdiv(n, d, d^d*binomial(d, n/d-1));

Formula

a(n) = Sum_{d|n} d^d * binomial(d,n/d-1).
If p is an odd prime, a(p) = p^p.

A360733 Expansion of Sum_{k>0} (x * (1 + (k * x)^k))^k.

Original entry on oeis.org

1, 2, 1, 9, 1, 98, 1, 1025, 2188, 15626, 1, 692836, 1, 5764802, 97656251, 201326593, 1, 36138519442, 1, 409470748547, 14242684529830, 3138428376722, 1, 10019491686645761, 476837158203126, 3937376385699290, 5403406870691968357, 19704673338472752470, 1
Offset: 1

Views

Author

Seiichi Manyama, Feb 18 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(n-#) * Binomial[#, n/# - 1] &]; Array[a, 30] (* Amiram Eldar, Aug 09 2023 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, (x*(1+(k*x)^k))^k))
    
  • PARI
    a(n) = sumdiv(n, d, d^(n-d)*binomial(d, n/d-1));

Formula

a(n) = Sum_{d|n} d^(n-d) * binomial(d,n/d-1).
If p is an odd prime, a(p) = 1.

A360754 Expansion of Sum_{k>0} (k * x * (1 + (2 * x)^k))^k.

Original entry on oeis.org

1, 6, 27, 288, 3125, 47368, 823543, 16793600, 387425673, 10000500000, 285311670611, 8916118771200, 302875106592253, 11112007563452544, 437893890412859375, 18446744108073484288, 827240261886336764177, 39346408077084637733376
Offset: 1

Views

Author

Seiichi Manyama, Feb 19 2023

Keywords

Crossrefs

Cf. A360732.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 2^(n-#) * #^# * Binomial[#, n/# - 1] &]; Array[a, 20] (* Amiram Eldar, Aug 02 2023 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k*x*(1+(2*x)^k))^k))
    
  • PARI
    a(n) = sumdiv(n, d, 2^(n-d)*d^d*binomial(d, n/d-1));

Formula

a(n) = Sum_{d|n} 2^(n-d) * d^d * binomial(d,n/d-1).
If p is an odd prime, a(p) = p^p.
Showing 1-3 of 3 results.