A360743 Number of idempotent binary relation matrices E on [n] such that E contains an identity matrix of order n-1 and (E - I_n)^2 = 0.
1, 2, 9, 52, 435, 5046, 81501, 1823144, 56572263, 2435930410, 145888123953, 12173595399516, 1418664206897691, 231298954644947294, 52860840028599821445, 16957903154151836822608, 7647128139328190245443279, 4852236755345544324027858258
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..113
- David Rosenblatt, On the graphs of finite Boolean relation matrices, Journal of Research, National Bureau of Standards, Vol 67B No. 4 Oct-Dec 1963.
Programs
-
Maple
a:= n-> (n+1)*add(binomial(n, k)*(2^k-1)^(n-k), k=0..n): seq(a(n), n=0..18); # Alois P. Heinz, Feb 18 2023
-
Mathematica
nn = 16; A[x_] := Sum[x^n/n! Exp[(2^n - 1) x], {n, 0, nn}]; Range[0, nn]! CoefficientList[Series[A[x] + x D[A[x], x], {x, 0, nn}], x]
Formula
Extensions
Corrected by Geoffrey Critzer, Feb 24 2023
Comments