cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360756 Expansion of Sum_{k>0} (x * (1 + 2 * x^k))^k.

Original entry on oeis.org

1, 3, 1, 5, 1, 11, 1, 9, 13, 11, 1, 45, 1, 15, 41, 49, 1, 79, 1, 117, 85, 23, 1, 297, 81, 27, 145, 309, 1, 483, 1, 481, 221, 35, 561, 1165, 1, 39, 313, 2121, 1, 1143, 1, 1365, 2437, 47, 1, 4081, 449, 3411, 545, 2341, 1, 4699, 5281, 4889, 685, 59, 1, 20445, 1, 63, 6217
Offset: 1

Views

Author

Seiichi Manyama, Feb 19 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 2^(n/# - 1) * Binomial[#, n/# - 1] &]; Array[a, 60] (* Amiram Eldar, Aug 02 2023 *)
  • PARI
    my(N=70, x='x+O('x^N)); Vec(sum(k=1, N, (x*(1+2*x^k))^k))
    
  • PARI
    a(n) = sumdiv(n, d, 2^(n/d-1)*binomial(d, n/d-1));

Formula

a(n) = Sum_{d|n} 2^(n/d-1) * binomial(d,n/d-1).
If p is an odd prime, a(p) = 1.