A360784 Number of multisets of nonempty strict integer partitions with a total of n parts and total sum of 2n.
1, 1, 3, 8, 18, 39, 86, 175, 352, 688, 1318, 2472, 4576, 8322, 14959, 26560, 46657, 81130, 139866, 239047, 405496, 682891, 1142466, 1899344, 3139432, 5160455, 8438871, 13732292, 22242647, 35867937, 57597730, 92121145, 146775205, 232998683, 368579188, 581091003
Offset: 0
Keywords
Examples
a(3) = 8: {[1,2,3]}, {[1],[1,4]}, {[1],[2,3]}, {[2],[1,3]}, {[3],[1,2]}, {[1],[1],[4]}, {[1],[2],[3]}, {[2],[2],[2]}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..450
Programs
-
Maple
h:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, h(n, i-1)+x*h(n-i, min(n-i, i-1))))) end: g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add( g(n, i-1, j-k)*x^(i*k)*binomial(coeff(h(n$2), x, i)+k-1, k), k=0..j)))) end: b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i)))) end: a:= n-> coeff(b(2*n$2), x, n): seq(a(n), n=0..35);
-
Mathematica
h[n_, i_] := h[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, h[n, i - 1] + x*h[n - i, Min[n - i, i - 1]]]]]; g[n_, i_, j_] := g[n, i, j] = Expand[If[j == 0, 1, If[i < 0, 0, Sum[g[n, i - 1, j - k]*x^(i*k)*Binomial[Coefficient[h[n, n], x, i] + k - 1, k], {k, 0, j}]]]]; b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*g[i, i, j], {j, 0, n/i}]]]]; a[n_] := Coefficient[b[2 n, 2 n], x, n]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Nov 21 2023, after Alois P. Heinz *)
Formula
a(n) = A360763(2n,n).