cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A360787 Expansion of Sum_{k>=0} x^k / (1 - (k*x)^2)^(k+1).

Original entry on oeis.org

1, 1, 1, 3, 13, 40, 177, 965, 4733, 28103, 184065, 1191888, 8713549, 67005689, 528870257, 4526024267, 40051790333, 368513578472, 3583302492545, 35868588067501, 373781214260749, 4052932682659599, 45218033687522481, 523234757502985824, 6245693941097387773
Offset: 0

Views

Author

Seiichi Manyama, Feb 20 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[Binomial[n-k,k] * (n-2*k)^(2*k), {k,0,n/2}], {n,1,30}]] (* Vaclav Kotesovec, Feb 21 2023 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(k*x)^2)^(k+1)))
    
  • PARI
    a(n) = sum(k=0, n\2, (n-2*k)^(2*k)*binomial(n-k, k));

Formula

a(n) = Sum_{k=0..floor(n/2)} (n-2*k)^(2*k) * binomial(n-k,k).

A360835 Expansion of Sum_{k>=0} (k * x)^k / (1 - (k * x)^3)^(k+1).

Original entry on oeis.org

1, 1, 4, 27, 258, 3221, 49572, 905466, 19122502, 458161191, 12275530636, 363646493044, 11801356347294, 416365459777150, 15867258718677348, 649548679156603983, 28426564854590132236, 1324406974148881529057, 65448443631801436742052
Offset: 0

Views

Author

Seiichi Manyama, Feb 22 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k/(1-(k*x)^3)^(k+1)))
    
  • PARI
    a(n) = sum(k=0, n\3, (n-3*k)^n*binomial(n-2*k, k));

Formula

a(n) = Sum_{k=0..floor(n/3)} (n-3*k)^n * binomial(n-2*k,k).

A360795 Expansion of Sum_{k>0} x^k / (1 - (k * x)^k)^(k+1).

Original entry on oeis.org

1, 3, 4, 17, 6, 211, 8, 1929, 7300, 22601, 12, 1724809, 14, 6703047, 223678576, 738787345, 18, 65630598229, 20, 2119646503661, 24448573943662, 3423809253371, 24, 21453113652593665, 12016296386718776, 4240253019018225, 8255251542208471048, 67251293544533119589, 30
Offset: 1

Views

Author

Seiichi Manyama, Feb 21 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(n-#) * Binomial[# + n/# - 1, #] &]; Array[a, 30] (* Amiram Eldar, Aug 02 2023 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-(k*x)^k)^(k+1)))
    
  • PARI
    a(n) = sumdiv(n, d, d^(n-d)*binomial(d+n/d-1, d));

Formula

a(n) = Sum_{d|n} d^(n-d) * binomial(d+n/d-1,d).
If p is prime, a(p) = 1 + p.

A360813 Expansion of Sum_{k>=0} ( x / (1 - (k * x)^3) )^k.

Original entry on oeis.org

1, 1, 1, 1, 2, 17, 82, 258, 818, 5671, 43363, 240520, 1183168, 8547054, 77831681, 596258173, 4031934111, 33313129161, 338733239446, 3187239159511, 27197807726066, 260179611473044, 2918973182685904, 31820249821418229, 324099587971865989
Offset: 0

Views

Author

Seiichi Manyama, Feb 21 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (x/(1-(k*x)^3))^k))
    
  • PARI
    a(n) = sum(k=0, n\3, (n-3*k)^(3*k)*binomial(n-2*k-1, k));

Formula

a(n) = Sum_{k=0..floor(n/3)} (n-3*k)^(3*k) * binomial(n-2*k-1,k).
Showing 1-4 of 4 results.