A360790 Squared length of diagonal of right trapezoid with three consecutive prime length sides.
8, 13, 41, 53, 137, 173, 305, 397, 533, 877, 977, 1373, 1697, 1885, 2245, 2813, 3517, 3737, 4493, 5077, 5345, 6277, 6953, 7937, 9413, 10217, 10613, 11465, 12077, 12785, 16165, 17165, 18869, 19325, 22237, 22837, 24665, 26605, 27925, 29933, 32141, 32765, 36497, 37253, 38953, 39745
Offset: 1
Keywords
Examples
p(2)=3 _ _ _ _ a(1): | \ d^2=2^2+(5-3)^2=8 p(1)=2 |_ _ _ _ _\ p(3)=5 p(3)=5 _ _ _ _ _ _ a(2): | \ d^2=3^2 + (7-5)^2 = 9+4 = 13 p(2)=3 | \ |_ _ _ _ _ _ _\ p(4)=7 a(3)= 5^2+(11-7)^2 = 25+16 = 41 a(7)= 17^2+(23-19)^2=305 = 5*61
Links
- Aaron T Cowan, Table of n, a(n) for n = 1..500
Programs
-
MATLAB
%shorter 1 line version arrayfun(@(p) p^2+(nextprime(nextprime(p+1)+1)-nextprime(p+1))^2,[primes(10^6)])
-
Mathematica
Map[(#[[1]]^2 + (#[[3]] - #[[2]])^2) &, Partition[Prime[Range[50]], 3, 1]] (* Amiram Eldar, Feb 24 2023 *)
-
PARI
a(n) = prime(n)^2 + (prime(n+2)-prime(n+1))^2; \\ Michel Marcus, Feb 23 2023
Formula
a(n) = prime(n)^2 + (prime(n+2)-prime(n+1))^2.
Comments