A360792 Integer portion of area of inscribed circle in a regular polygon having n sides of unit length.
0, 0, 1, 2, 3, 4, 5, 7, 9, 10, 12, 15, 17, 19, 22, 25, 28, 31, 34, 37, 41, 45, 49, 53, 57, 61, 66, 71, 75, 80, 86, 91, 96, 102, 108, 114, 120, 126, 133, 139, 146, 153, 160, 167, 175, 182, 190, 198, 206, 214, 223, 231, 240, 249, 258, 267, 276, 285, 295, 305
Offset: 3
Keywords
Examples
For n = 5, the circle inscribed in a regular pentagon with sides of unit length has area (Pi/4)*cot(Pi/5)^2 = 1.4878796365..., so a(5) = floor(1.4878796365...) = 1.
Programs
-
Maple
a:= n-> floor(Pi/(2*tan(Pi/n))^2): seq(a(n), n=3..65); # Alois P. Heinz, Feb 20 2023
-
Mathematica
a[n_] := Floor[(Pi/4)*Cot[Pi/n]^2]; Array[a, 60, 3] (* Amiram Eldar, Feb 24 2023 *)
-
PARI
a(n) = floor((Pi/4)/tan(Pi/n)^2) \\ Andrew Howroyd, Feb 20 2023
-
PARI
apply( {A360792(n)=Pi/4\tan(Pi/n)^2}, [3..62]) \\ M. F. Hasler, Apr 03 2025
Formula
a(n) = floor((Pi/4)*(cot(Pi/n)^2)).
Extensions
More terms from Andrew Howroyd, Feb 20 2023
Comments