A360807 Decimal expansion of Sum_{m>=1} 1/(1/4 + z(m)^2) where z(m) is the imaginary part of the m-th nontrivial zero of the Dirichlet beta function whose real part is 1/2.
0, 7, 7, 7, 8, 3, 9, 8, 9, 9, 6, 1, 7, 9, 2, 9, 6, 4, 4, 3, 1, 0, 7, 9, 0, 2, 6, 9, 1, 9, 5, 0, 8, 5, 1, 5, 1, 6, 4, 3, 0, 6, 8, 4, 2, 8, 8, 7, 5, 6, 4, 2, 8, 8, 5, 4, 9, 0, 3, 3, 2, 3, 4, 4, 6, 7, 1, 1, 4, 1, 0, 3, 3, 0, 7, 1, 8, 6, 3, 3, 6, 8, 8, 0, 8, 2, 6
Offset: 0
Examples
0.077783989961792964431079...
Links
- Kano Kono, Summary Dirichlet beta function, Alien's Mathematics, p. 5.
Crossrefs
Programs
-
Mathematica
kk = RealDigits[N[4 Log[Gamma[3/4]] + EulerGamma/2 + Log[2] - 3 Log[Pi]/2, 115]][[1]]; Prepend[kk, 0]
-
PARI
4*log(gamma(3/4)) + Euler/2 + log(2) - 3*log(Pi)/2 \\ Michel Marcus, Mar 15 2023
Comments