A360826 a(1) = 1, a(n) = (k+1)*(2*k+1), where k = Product_{i=1..n-1} a(i).
1, 6, 91, 597871, 213122969971321411, 9680343693975641657052402556458789711774336036960631
Offset: 1
Keywords
References
- W. Sierpinski, 250 Problems in Elementary Number Theory. New York: American Elsevier, 1970. Problem #42.
Links
- Michel Marcus, Table of n, a(n) for n = 1..8
Programs
-
Mathematica
a[1]=1; a[n_]:=Module[{k=Product[a[i],{i,1,n-1}]},(k+1)*(2*k+1)]; a/@Range[6] Join[{1}, RecurrenceTable[{a[2] == 6, a[n+1] == (1 + a[n]*(Sqrt[1 + 8*a[n]] - 3)/4) * (1 + 2*a[n]*(Sqrt[1 + 8*a[n]] - 3)/4)}, a, {n, 2, 8}]] (* Vaclav Kotesovec, May 05 2023 *)
-
PARI
a(n) = if (n==1, 1, my(k = prod(i=1,n-1, a(i))); (k+1)*(2*k+1)); \\ Michel Marcus, Mar 25 2025
Formula
a(1) = 1, a(n) = (k+1)*(2*k+1), where k = Product_{i=1..n-1} a(i).
a(n) ~ c^(3^n), where c = 1.1784502032269064445225839284451956694752084180050932315805089054871825498... - Vaclav Kotesovec, May 05 2023
Comments