A360850 Array read by antidiagonals: T(m,n) is the number of (undirected) paths in the complete bipartite graph K_{m,n}.
1, 3, 3, 6, 12, 6, 10, 33, 33, 10, 15, 72, 135, 72, 15, 21, 135, 438, 438, 135, 21, 28, 228, 1140, 2224, 1140, 228, 28, 36, 357, 2511, 8850, 8850, 2511, 357, 36, 45, 528, 4893, 27480, 55725, 27480, 4893, 528, 45, 55, 747, 8700, 70462, 265665, 265665, 70462, 8700, 747, 55
Offset: 1
Examples
Array begins: =================================================== m\n| 1 2 3 4 5 6 7 ... ---+----------------------------------------------- 1 | 1 3 6 10 15 21 28 ... 2 | 3 12 33 72 135 228 357 ... 3 | 6 33 135 438 1140 2511 4893 ... 4 | 10 72 438 2224 8850 27480 70462 ... 5 | 15 135 1140 8850 55725 265665 962010 ... 6 | 21 228 2511 27480 265665 2006316 11158203 ... 7 | 28 357 4893 70462 962010 11158203 98309827 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph.
- Eric Weisstein's World of Mathematics, Graph Path.
- Eric Weisstein's World of Mathematics, Rook Graph.
Programs
-
PARI
T(m,n) = sum(j=1, min(m,n), j!^2*binomial(m,j)*binomial(n,j)*(1 + (m+n)/2 - j))
Formula
T(m,n) = Sum_{j=1..min(m,n)} j!^2*binomial(m,j)*binomial(n,j)*(1 + (m+n)/2 - j).
T(m,n) = T(n,m).
Comments