cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360855 Array read by antidiagonals: T(m,n) is the number of triangles in the rook graph K_m X K_n.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 4, 2, 2, 4, 10, 8, 6, 8, 10, 20, 20, 16, 16, 20, 20, 35, 40, 35, 32, 35, 40, 35, 56, 70, 66, 60, 60, 66, 70, 56, 84, 112, 112, 104, 100, 104, 112, 112, 84, 120, 168, 176, 168, 160, 160, 168, 176, 168, 120, 165, 240, 261, 256, 245, 240, 245, 256, 261, 240, 165
Offset: 1

Views

Author

Andrew Howroyd, Feb 24 2023

Keywords

Comments

A triangle is a clique of size 3. Also, a 3-cycle.

Examples

			Array begins:
=======================================
m\n|  1   2   3   4   5   6   7   8 ...
---+-----------------------------------
1  |  0   0   1   4  10  20  35  56 ...
2  |  0   0   2   8  20  40  70 112 ...
3  |  1   2   6  16  35  66 112 176 ...
4  |  4   8  16  32  60 104 168 256 ...
5  | 10  20  35  60 100 160 245 360 ...
6  | 20  40  66 104 160 240 350 496 ...
7  | 35  70 112 168 245 350 490 672 ...
8  | 56 112 176 256 360 496 672 896 ...
  ...
		

Crossrefs

Main diagonal is A288961.
Rows n=1..3 are A000292(n-2), A007290, A060354.

Programs

  • PARI
    T(m, n) = m*binomial(n,3) + n*binomial(m,3)

Formula

T(m,n) = m*binomial(n,3) + n*binomial(m,3).
T(m,n) = T(n,m).