cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360857 Triangle read by rows. T(n, k) = binomial(n, ceil(k/2)) * binomial(n + 1, floor(k/2)).

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 1, 3, 12, 12, 1, 4, 20, 30, 60, 1, 5, 30, 60, 150, 150, 1, 6, 42, 105, 315, 420, 700, 1, 7, 56, 168, 588, 980, 1960, 1960, 1, 8, 72, 252, 1008, 2016, 4704, 5880, 8820, 1, 9, 90, 360, 1620, 3780, 10080, 15120, 26460, 26460
Offset: 0

Views

Author

Peter Luschny, Feb 28 2023

Keywords

Examples

			Table T(n, k) starts:
[0] 1;
[1] 1, 1;
[2] 1, 2,  6;
[3] 1, 3, 12,  12;
[4] 1, 4, 20,  30,   60;
[5] 1, 5, 30,  60,  150,  150;
[6] 1, 6, 42, 105,  315,  420,   700;
[7] 1, 7, 56, 168,  588,  980,  1960,  1960;
[8] 1, 8, 72, 252, 1008, 2016,  4704,  5880,  8820;
[9] 1, 9, 90, 360, 1620, 3780, 10080, 15120, 26460, 26460.
		

Crossrefs

Programs

  • Maple
    A360857 := (n, k) -> binomial(n, ceil(k/2))*binomial(n + 1, floor(k/2)):
    seq(seq(A360857(n, k), k=0..n), n=0..9);
  • Mathematica
    Table[Binomial[n,Ceiling[k/2]]Binomial[n+1,Floor[k/2]],{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Mar 06 2023 *)
  • Python
    from math import comb
    def A360857_T(n,k): return comb(n+1,m:=k>>1)**2*(n+1-m)*(n-m)//((m+1)*(n+1)) if k&1 else comb(n+1,m:=k>>1)**2*(n+1-m)//(n+1) # Chai Wah Wu, Feb 28 2023