cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A361430 Multiplicative with a(p^e) = e - 1.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 11 2023

Keywords

Comments

a(n) is the number of coreful divisors d of n such that n/d is also a coreful divisor of n (a coreful divisor d of a number n is a divisor with the same set of distinct prime factors as n, see A307958). - Amiram Eldar, Aug 15 2023

Crossrefs

Cf. A001694, A298826, A307958, A335850 (indices of records).
Cf. A005361 (multiplicative with a(p^e) = e), A000005 (e+1), A343443 (e+2), A360997 (e+3), A360908 (2*e-1), A360910 (3*e-1), A360911 (3*e-2).

Programs

  • Mathematica
    g[p_, e_] := e-1; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 200]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1 + 1/(1 - 1/X)^2)[n], ", "))
    
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = f[k,2]-1; f[k,2] = 1); factorback(f); \\ Michel Marcus, Mar 13 2023
    
  • Python
    from math import prod
    from sympy import factorint
    def A361430(n): return prod(e-1 for e in factorint(n).values()) # Chai Wah Wu, Apr 15 2025

Formula

Dirichlet g.f.: Product_{primes p} (1 + 1/(p^s - 1)^2).
Dirichlet g.f.: zeta(2*s) * zeta(3*s)^2 * Product_{primes p} (1 + 2/p^(4*s) + 2/p^(5*s) - 1/p^(6*s) - 2/p^(7*s) - 2/p^(8*s)).
Let f(s) = Product_{primes p} (1 + 2/p^(4*s) + 2/p^(5*s) - 1/p^(6*s) - 2/p^(7*s) - 2/p^(8*s)), then
Sum_{k=1..n} a(k) ~ f(1/2) * zeta(3/2)^2 * sqrt(n) + zeta(2/3) * (f(1/3) * (log(n) + 6*gamma - 3 + 2*zeta'(2/3)/zeta(2/3)) + f'(1/3)) * n^(1/3) / 3, where
f(1/2) = Product_{primes p} (1 + 2/p^2 + 2/p^(5/2) - 1/p^3 - 2/p^(7/2) - 2/p^4) = 2.20286226691565931157047065666916419062717171359087693723221239...
f(1/3) = Product_{primes p} (1 + 2/p^(4/3) + 2/p^(5/3) - 1/p^2 - 2/p^(7/3) - 2/p^(8/3)) = 6.250573144372477079986352917664218040797528021629950408099536...
f'(1/3) = f(1/3) * Sum_{primes p} (-2*(-8 + p^(1/3) + 4*p^(2/3)) * log(p) / (-2 + p^(2/3) + p - p^(5/3) + p^2)) = -90.898558294301467740374653006294640945295... and gamma is the Euler-Mascheroni constant A001620.
Conjecture: a(n) = abs(A298826(n)).
a(n) > 0 if and only if n is powerful (A001694). - Amiram Eldar, Aug 15 2023

A360910 Multiplicative with a(p^e) = 3*e - 1.

Original entry on oeis.org

1, 2, 2, 5, 2, 4, 2, 8, 5, 4, 2, 10, 2, 4, 4, 11, 2, 10, 2, 10, 4, 4, 2, 16, 5, 4, 8, 10, 2, 8, 2, 14, 4, 4, 4, 25, 2, 4, 4, 16, 2, 8, 2, 10, 10, 4, 2, 22, 5, 10, 4, 10, 2, 16, 4, 16, 4, 4, 2, 20, 2, 4, 10, 17, 4, 8, 2, 10, 4, 8, 2, 40, 2, 4, 10, 10, 4, 8, 2
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 25 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ ((3*Last[#] - 1) & /@ FactorInteger[n]); a[1] = 1; Array[a, 100] (* Amiram Eldar, Feb 25 2023 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1+2*X^2)/(1-X)^2)[n], ", "))

Formula

Dirichlet g.f.: zeta(s)^2 * Product_{primes p} (1 + 2/p^(2*s)).
Let f(s) = Product_{primes p} (1 + 2/p^(2*s)), then Sum_{k=1..n} a(k) ~ n*(f(1)*(log(n) + 2*gamma - 1) + f'(1)), where f(1) = Product_{primes p} (1 + 2/p^2) = 2.1908700855532557963501937947188223715671192999357721091330157224657649571..., f'(1) = f(1) * Sum_{primes p} (-4*log(p)/(p^2 + 2)) = -3.559220569509264750413960031425742000438433285978558703470289340806139902... and gamma is the Euler-Mascheroni constant A001620.

A360909 Multiplicative with a(p^e) = 3*e + 2.

Original entry on oeis.org

1, 5, 5, 8, 5, 25, 5, 11, 8, 25, 5, 40, 5, 25, 25, 14, 5, 40, 5, 40, 25, 25, 5, 55, 8, 25, 11, 40, 5, 125, 5, 17, 25, 25, 25, 64, 5, 25, 25, 55, 5, 125, 5, 40, 40, 25, 5, 70, 8, 40, 25, 40, 5, 55, 25, 55, 25, 25, 5, 200, 5, 25, 40, 20, 25, 125, 5, 40, 25, 125
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 25 2023

Keywords

Crossrefs

Cf. A005361 (multiplicative with a(p^e) = e), A000005 (e+1), A343443 (e+2), A360997 (e+3), A322327 (2*e), A048691 (2*e+1), A360908 (2*e-1), A226602 (3*e), A048785 (3*e+1), A360910 (3*e-1), this sequence (3*e+2), A360911 (3*e-2), A322328 (4*e), A360996 (5*e).

Programs

  • Mathematica
    a[n_] := Times @@ ((3*Last[#] + 2) & /@ FactorInteger[n]); a[1] = 1; Array[a, 100] (* Amiram Eldar, Feb 25 2023 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1+3*X-X^2)/(1-X)^2)[n], ", "))

Formula

Dirichlet g.f.: zeta(s)^2 * Product_{primes p} (1 + 3/p^s - 1/p^(2*s)).
Dirichlet g.f.: zeta(s)^5 * Product_{primes p} (1 - 7/p^(2*s) + 11/p^(3*s) - 6/p^(4*s) + 1/p^(5*s)), (with a product that converges for s=1).
Sum_{k=1..n} a(k) ~ c * n * log(n)^4 / 24, where c = Product_{primes p} (1 - 7/p^2 + 11/p^3 - 6/p^4 + 1/p^5) = 0.091414252314317101861531055690354339957600046..., more precise (but very complicated) asymptotics can be obtained (in Mathematica notation) as Residue[Zeta[s]^5 * f[s] * n^s / s, {s, 1}], where f[s] = Product_{primes p} (1 - 7/p^(2*s) + 11/p^(3*s) - 6/p^(4*s) + 1/p^(5*s)).

A360997 Multiplicative with a(p^e) = e + 3.

Original entry on oeis.org

1, 4, 4, 5, 4, 16, 4, 6, 5, 16, 4, 20, 4, 16, 16, 7, 4, 20, 4, 20, 16, 16, 4, 24, 5, 16, 6, 20, 4, 64, 4, 8, 16, 16, 16, 25, 4, 16, 16, 24, 4, 64, 4, 20, 20, 16, 4, 28, 5, 20, 16, 20, 4, 24, 16, 24, 16, 16, 4, 80, 4, 16, 20, 9, 16, 64, 4, 20, 16, 64, 4, 30, 4, 16
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 28 2023

Keywords

Crossrefs

Cf. A005361 (multiplicative with a(p^e) = e), A000005 (e+1), A343443 (e+2), this sequence (e+3), A322327 (2*e), A048691 (2*e+1), A360908 (2*e-1), A226602 (3*e), A048785 (3*e+1), A360910 (3*e-1), A360909 (3*e+2), A360911 (3*e-2), A322328 (4*e), A360996 (5*e).

Programs

  • Mathematica
    g[p_, e_] := e+3; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1+2*X-2*X^2)/(1-X)^2)[n], ", "))

Formula

Dirichlet g.f.: Product_{primes p} (1 + (4*p^s - 3)/(p^s - 1)^2).
Dirichlet g.f.: zeta(s)^4 * Product_{primes p} (1 - 5/p^(2*s) + 6/p^(3*s) - 2/p^(4*s)).
From Amiram Eldar, Sep 01 2023: (Start)
a(n) = A000005(A361264(n)).
a(n) = A074816(n)*A007426(n)/A007425(n). (End)

A360996 Multiplicative with a(p^e) = 5*e, p prime and e > 0.

Original entry on oeis.org

1, 5, 5, 10, 5, 25, 5, 15, 10, 25, 5, 50, 5, 25, 25, 20, 5, 50, 5, 50, 25, 25, 5, 75, 10, 25, 15, 50, 5, 125, 5, 25, 25, 25, 25, 100, 5, 25, 25, 75, 5, 125, 5, 50, 50, 25, 5, 100, 10, 50, 25, 50, 5, 75, 25, 75, 25, 25, 5, 250, 5, 25, 50, 30, 25, 125, 5, 50, 25, 125, 5, 150
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 28 2023

Keywords

Crossrefs

Cf. A005361 (multiplicative with a(p^e) = e), A000005 (e+1), A343443 (e+2), A360997 (e+3), A322327 (2*e), A048691 (2*e+1), A360908 (2*e-1), A226602 (3*e), A048785 (3*e+1), A360910 (3*e-1), A360909 (3*e+2), A360911 (3*e-2), A322328 (4*e).
Cf. A082476.

Programs

  • Mathematica
    g[p_, e_] := 5*e; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1+3*X+X^2)/(1-X)^2)[n], ", "))

Formula

Dirichlet g.f.: Product_{primes p} (1 + 5*p^s/(p^s - 1)^2).
a(n) = A005361(n) * A082476(n).
Showing 1-5 of 5 results.