cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A360918 Array read by antidiagonals: T(m,n) is the number of maximum induced trees in the grid graph P_m X P_n.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 10, 10, 10, 1, 1, 4, 26, 26, 4, 1, 1, 24, 2, 32, 2, 24, 1, 1, 8, 10, 50, 50, 10, 8, 1, 1, 56, 50, 56, 22, 56, 50, 56, 1, 1, 16, 194, 64, 608, 608, 64, 194, 16, 1, 1, 128, 4, 72, 182, 4120, 182, 72, 4, 128, 1, 1, 32, 32, 80, 16, 208, 208, 16, 80, 32, 32, 1
Offset: 1

Views

Author

Andrew Howroyd, Feb 26 2023

Keywords

Comments

A maximum induced tree is an induced tree of greatest size.

Examples

			Array begins:
===============================================
m\n| 1  2   3  4   5     6    7     8     9 ...
---+-------------------------------------------
1  | 1  1   1  1   1     1    1     1     1 ...
2  | 1  4   2 10   4    24    8    56    16 ...
3  | 1  2  10 26   2    10   50   194     4 ...
4  | 1 10  26 32  50    56   64    72    80 ...
5  | 1  4   2 50  22   608  182    16     2 ...
6  | 1 24  10 56 608  4120  208  1968 22716 ...
7  | 1  8  50 64 182   208  488   560  1050 ...
8  | 1 56 194 72  16  1968  560 65864 14340 ...
9  | 1 16   4 80   2 22716 1050 14340   166 ...
   ...
		

Crossrefs

Main diagonal is A360919.
Cf. A360202, A360847, A360913, A360916, A360920 (maximum sizes).

Formula

T(m,n) = T(n,m).

A360917 Array read by antidiagonals: T(m,n) is the number of vertices in the longest induced path in the grid graph P_m X P_n.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 4, 5, 5, 4, 5, 6, 7, 6, 5, 6, 8, 9, 9, 8, 6, 7, 9, 11, 11, 11, 9, 7, 8, 11, 14, 14, 14, 14, 11, 8, 9, 12, 16, 17, 17, 17, 16, 12, 9, 10, 14, 18, 20, 21, 21, 20, 18, 14, 10, 11, 15, 20, 22, 24, 24, 24, 22, 20, 15, 11, 12, 17, 22, 25, 27, 29, 29, 27, 25, 22, 17, 12
Offset: 1

Views

Author

Andrew Howroyd, Feb 26 2023

Keywords

Comments

Equivalently, T(m,n) is the maximum number of unit squares of a snake-like polyomino in an m X n rectangle.

Examples

			Array begins:
==============================================
  m\n|  1  2  3  4  5  6  7  8  9 10 11 12 ...
-----+----------------------------------------
   1 |  1  2  3  4  5  6  7  8  9 10 11 12 ...
   2 |  2  3  5  6  8  9 11 12 14 15 17 18 ...
   3 |  3  5  7  9 11 14 16 18 20 22 24 26 ...
   4 |  4  6  9 11 14 17 20 22 25 28 30 33 ...
   5 |  5  8 11 14 17 21 24 27 30 34 37 40 ...
   6 |  6  9 14 17 21 24 29 32 36 40 44 47 ...
   7 |  7 11 16 20 24 29 33 38 42 46 50 55 ...
   8 |  8 12 18 22 27 32 38 42 48 52 57 62 ...
   9 |  9 14 20 25 30 36 42 48 53 58 64 70 ...
  10 | 10 15 22 28 34 40 46 52 58 64 71 77 ...
  11 | 11 17 24 30 37 44 50 57 64 71 77 86 ...
  12 | 12 18 26 33 40 47 55 62 70 77 86 92 ...
  ...
		

Crossrefs

Main diagonal is A331968.
Cf. A360199, A360915, A360916 (maximum induced paths), A360920.

Formula

T(m,n) = T(n,m).
T(m,n) = 2*m*n/3 + O(m+n) (Beluhov 2023, Proposition 3). - Pontus von Brömssen, May 08 2023

A360915 Array read by antidiagonals: T(m,n) is the length of the longest induced cycle in the grid graph P_m X P_n.

Original entry on oeis.org

4, 4, 4, 4, 8, 4, 4, 10, 10, 4, 4, 12, 12, 12, 4, 4, 14, 14, 14, 14, 4, 4, 16, 16, 16, 16, 16, 4, 4, 18, 20, 18, 18, 20, 18, 4, 4, 20, 22, 24, 20, 24, 22, 20, 4, 4, 22, 24, 26, 28, 28, 26, 24, 22, 4, 4, 24, 28, 28, 30, 32, 30, 28, 28, 24, 4, 4, 26, 30, 32, 32, 36, 36, 32, 32, 30, 26, 4
Offset: 2

Views

Author

Andrew Howroyd, Feb 26 2023

Keywords

Comments

All terms are even since the grid graph is bipartite.

Examples

			Array begins:
==========================================
  m\n| 2  3  4  5  6  7  8  9 10 11 12 ...
-----+------------------------------------
   2 | 4  4  4  4  4  4  4  4  4  4  4 ...
   3 | 4  8 10 12 14 16 18 20 22 24 26 ...
   4 | 4 10 12 14 16 20 22 24 28 30 32 ...
   5 | 4 12 14 16 18 24 26 28 32 36 38 ...
   6 | 4 14 16 18 20 28 30 32 36 42 44 ...
   7 | 4 16 20 24 28 32 36 40 44 48 52 ...
   8 | 4 18 22 26 30 36 40 46 50 56 60 ...
   9 | 4 20 24 28 32 40 46 50 56 62 68 ...
  10 | 4 22 28 32 36 44 50 56 62 70 74 ...
  11 | 4 24 30 36 42 48 56 62 70 76 82 ...
  12 | 4 26 32 38 44 52 60 68 74 82 90 ...
  ...
		

Crossrefs

Main diagonal is A357357.

Formula

T(m,n) = T(n,m).
T(m,n) = 2*m*n/3 + O(m+n) (Beluhov 2023, Proposition 3). - Pontus von Brömssen, May 08 2023

A360921 Maximum number of vertices in an induced tree in the n X n grid graph.

Original entry on oeis.org

1, 3, 7, 12, 19, 26, 36, 46, 59, 72, 87, 102, 120, 138, 159
Offset: 1

Views

Author

Andrew Howroyd, Feb 26 2023

Keywords

Examples

			a(4) = 12:
   O O O O
   O     O
   O O   O
   O   O O
		

Crossrefs

Main diagonal of A360920.
Cf. A331968, A357357, A360919 (maximum induced trees).

Formula

a(n) >= A331968(n).
Showing 1-4 of 4 results.