cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A361070 a(n) is the number of occurrences of n in A360923.

Original entry on oeis.org

1, 1, 1, 2, 4, 5, 7, 10, 12, 15, 19, 21, 27, 30, 35, 40, 44, 52, 56, 63, 70, 75, 85, 90, 100, 107, 115, 126, 132, 145, 153, 163, 175, 182, 199, 206, 220, 232, 242, 259, 268, 285, 297, 310, 328, 337, 359, 370, 387, 404, 416, 440, 451, 472, 489, 504, 528, 540
Offset: 0

Views

Author

Rémy Sigrist, Mar 01 2023

Keywords

Comments

For n > 0, the number of starting positions from Z^2 at distance n from (0, 0) appears to be A051890(n):
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
. . . . . . . . . . . . . . . . . . . . . . . . . 5 6 6 6 6 6
. . . . . . . . . . . . . . . . . . . . 6 4 5 5 5 5 6 6 6 6 6
. . . . . . . . . . . . . . . . 6 5 3 4 4 4 5 5 5 5 6 6 6 6 .
. . . . . . . . . . . . 6 6 5 4 2 3 3 4 4 4 5 5 5 6 6 6 6 . .
. . . . . . . . . 6 6 5 5 4 3 1 2 3 3 4 4 5 5 5 6 6 6 . . . .
. . . . . . 6 6 6 5 5 4 4 3 2 0 2 3 4 4 5 5 6 6 6 . . . . . .
. . . . 6 6 6 5 5 5 4 4 3 3 2 1 3 4 5 5 6 6 . . . . . . . . .
. . 6 6 6 6 5 5 5 4 4 4 3 3 2 4 5 6 6 . . . . . . . . . . . .
. 6 6 6 6 5 5 5 5 4 4 4 3 5 6 . . . . . . . . . . . . . . . .
6 6 6 6 6 5 5 5 5 4 6 . . . . . . . . . . . . . . . . . . . .
6 6 6 6 6 5 . . . . . . . . . . . . . . . . . . . . . . . . .
6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The largest column of A360923 containing n appears to have index A002620(n).

Examples

			Square array A360923 begins as follows:
     0 2 3 4 4 5 5 6 6 6 7 7 7 8 8 8 8 .
     1 3 4 5 5 6 6 7 7 7 8 8 8 . . . . .
     4 5 6 6 7 7 8 8 8 . . . . .
     7 7 8 8 . . . . . .
     . . . . .
Hence a(0) = 1, a(1) = 1, a(2) = 1, a(3) = 2, a(4) = 4, a(5) = 5, a(6) = 7, a(7) = 10 and a(8) = 12.
		

Crossrefs

A360924 Smallest number of moves needed to win Integer Lunar Lander with starting position (0,n).

Original entry on oeis.org

0, 2, 3, 4, 4, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18
Offset: 0

Views

Author

Allan C. Wechsler, Feb 25 2023

Keywords

Comments

See A360923 for game rules.
Data provided by Tom Karzes.
It appears that a(n) = 1 + floor(sqrt(4*n-3)) for n>0 (which is essentially A000267 and A027434). - N. J. A. Sloane, Feb 25 2023 [This is proved by Casteigts, Raffinot, and Schoeters (2020) in the form a(n) = ceiling(2*sqrt(n)). - Pontus von Brömssen, Mar 01 2023]

Examples

			From (0,6), a 5-move solution is (-1,5), (-2,3), (-2,1), (-1,0), (0,0). There is no shorter solution, so a(6) = 5.
		

Crossrefs

Top row of table A360923. Cf. A360925, A360926.
See also A000267 and A027434.

A360925 Smallest number of moves needed to win Integer Lunar Lander from starting position (n,0).

Original entry on oeis.org

0, 1, 4, 7, 9, 12, 14, 17, 19, 21, 24, 26, 29, 31, 34, 36, 38, 41, 43, 46, 48, 50, 53, 55, 58, 60, 63, 65, 67, 70, 72, 75, 77, 79, 82, 84, 87, 89, 92, 94, 96, 99, 101, 104, 106, 108, 111, 113, 116, 118, 120, 123, 125, 128, 130, 133, 135, 137, 140, 142, 145
Offset: 0

Views

Author

Allan C. Wechsler, Feb 25 2023

Keywords

Comments

See A360923 for game rules.
Data from Tom Karzes.
The first differences begin 1, 3, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, ... Are all the differences after the start either 2 or 3? - N. J. A. Sloane, Feb 25 2023
Conjecture: For n >= 2, a(n) = n+1+floor(sqrt(2*n^2-2*n-3)). - N. J. A. Sloane, Feb 26 2023

Examples

			For starting position (3,0), a 7-move solution is (2,2), (1,3), (0,3), (-1,2), (-1,1), (-1,0), (0,0). There are no shorter solutions, so a(3) = 7.
		

Crossrefs

First column of table A360923.

Extensions

More terms from Rémy Sigrist, Feb 26 2023

A360926 Smallest number of moves needed to win Integer Lunar Lander with a starting position of (n,n).

Original entry on oeis.org

0, 3, 6, 8, 11, 13, 16, 18, 20, 23, 25, 28, 30, 33, 35, 37, 40, 42, 45, 47, 49, 52, 54, 57, 59, 62, 64, 66, 69, 71, 74, 76, 78, 81, 83, 86, 88, 91, 93, 95, 98, 100, 103, 105, 107, 110, 112, 115, 117, 119, 122, 124, 127, 129, 132, 134, 136, 139, 141, 144, 146
Offset: 0

Views

Author

Allan C. Wechsler, Feb 25 2023

Keywords

Comments

See A360923 for the rules of Integer Lunar Lander.
Data from Tom Karzes.
The conjectured formula for A360923 implies a formula for a(n). - N. J. A. Sloane, Feb 26 2023

Examples

			From starting position (3,3), an 8-move solution is (2,5), (1,6), (0,6), (-1,5), (-2,3), (-2,1), (-1,0), (0,0). There is no shorter solution, so a(3) = 8.
		

Crossrefs

Main diagonal of table A360923. Cf. A360924, A360925.

Extensions

More terms from Rémy Sigrist, Feb 26 2023
Showing 1-4 of 4 results.