A360928 Decimal expansion of Sum_{i>=0} 1/(phi^(4*i+2) - 1) where phi = (1+sqrt(5))/2 is the golden ratio.
6, 8, 6, 6, 3, 8, 5, 6, 5, 6, 8, 1, 2, 6, 0, 6, 3, 9, 3, 9, 6, 5, 5, 6, 7, 6, 5, 6, 7, 0, 5, 6, 5, 9, 6, 1, 0, 1, 8, 6, 9, 0, 3, 1, 2, 3, 8, 2, 1, 8, 1, 6, 1, 6, 4, 9, 8, 1, 2, 5, 0, 3, 3, 1, 2, 9, 4, 3, 5, 1, 0, 5, 3, 3, 3, 5, 5, 3, 2, 5, 3, 8, 2, 1, 4, 9, 1, 8, 7, 5, 5, 2, 8, 4, 8, 8, 4, 8, 0, 9, 1, 5, 7, 1, 9
Offset: 0
Examples
0.68663856568126063939655676567056596...
Links
- Kevin Ryde, Table of n, a(n) for n = 0..10000
- W. E. Greig, Sums of Fibonacci Reciprocals, The Fibonacci Quarterly, Vol. 15, No. 1, February 1977, pp. 46-48 (see equation (15)).
Programs
-
Mathematica
RealDigits[Sum[1/(GoldenRatio^(4*i + 2) - 1), {i, 0, Infinity}], 10, 105][[1]] (* Amiram Eldar, Feb 26 2023 *) RealDigits[(Log[(5 + 3*Sqrt[5])/2] + QPolyGamma[0, 1/2, (7 + 3*Sqrt[5])/2]) / Log[(7 - 3*Sqrt[5])/2], 10, 105][[1]] (* Vaclav Kotesovec, Feb 26 2023 *)
-
PARI
sumpos(i=0, 1/(((1+sqrt(5))/2)^(4*i+2) - 1)) \\ Michel Marcus, Feb 26 2023
Formula
Equals Sum_{j>=1} phi^(2*j)/(phi^(4*j) - 1) [Greig, equation (15)].
Equals A153386 / sqrt(5) [Greig, equations (13) and (14)].