cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360928 Decimal expansion of Sum_{i>=0} 1/(phi^(4*i+2) - 1) where phi = (1+sqrt(5))/2 is the golden ratio.

Original entry on oeis.org

6, 8, 6, 6, 3, 8, 5, 6, 5, 6, 8, 1, 2, 6, 0, 6, 3, 9, 3, 9, 6, 5, 5, 6, 7, 6, 5, 6, 7, 0, 5, 6, 5, 9, 6, 1, 0, 1, 8, 6, 9, 0, 3, 1, 2, 3, 8, 2, 1, 8, 1, 6, 1, 6, 4, 9, 8, 1, 2, 5, 0, 3, 3, 1, 2, 9, 4, 3, 5, 1, 0, 5, 3, 3, 3, 5, 5, 3, 2, 5, 3, 8, 2, 1, 4, 9, 1, 8, 7, 5, 5, 2, 8, 4, 8, 8, 4, 8, 0, 9, 1, 5, 7, 1, 9
Offset: 0

Views

Author

Kevin Ryde, Feb 25 2023

Keywords

Examples

			0.68663856568126063939655676567056596...
		

Crossrefs

Cf. A001622 (phi), A153386.

Programs

  • Mathematica
    RealDigits[Sum[1/(GoldenRatio^(4*i + 2) - 1), {i, 0, Infinity}], 10, 105][[1]] (* Amiram Eldar, Feb 26 2023 *)
    RealDigits[(Log[(5 + 3*Sqrt[5])/2] + QPolyGamma[0, 1/2, (7 + 3*Sqrt[5])/2]) / Log[(7 - 3*Sqrt[5])/2], 10, 105][[1]] (* Vaclav Kotesovec, Feb 26 2023 *)
  • PARI
    sumpos(i=0, 1/(((1+sqrt(5))/2)^(4*i+2) - 1)) \\ Michel Marcus, Feb 26 2023

Formula

Equals Sum_{j>=1} phi^(2*j)/(phi^(4*j) - 1) [Greig, equation (15)].
Equals A153386 / sqrt(5) [Greig, equations (13) and (14)].