cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360938 Decimal expansion of arcsinh(Pi).

Original entry on oeis.org

1, 8, 6, 2, 2, 9, 5, 7, 4, 3, 3, 1, 0, 8, 4, 8, 2, 1, 9, 8, 8, 8, 3, 6, 1, 3, 2, 5, 1, 8, 2, 6, 2, 0, 5, 7, 4, 9, 0, 2, 6, 7, 4, 1, 8, 4, 9, 6, 1, 5, 5, 4, 7, 6, 5, 6, 1, 2, 8, 7, 9, 5, 1, 4, 4, 2, 3, 7, 3, 6, 5, 4, 5, 7, 3, 5, 7, 9, 8, 0, 0, 2, 9, 5, 1, 8, 7, 1, 9, 9, 7, 0, 1, 5, 6, 6, 1, 4, 6, 3, 3, 4, 5, 8, 5
Offset: 1

Views

Author

Wolfe Padawer, Feb 26 2023

Keywords

Examples

			1.862295743310848219888361325182620574902674184961554765612879514423...
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 31, page 291.

Crossrefs

Programs

  • Mathematica
    RealDigits[ArcSinh[Pi], 10, 105][[1]]
  • PARI
    asinh(Pi) \\ Michel Marcus, Feb 26 2023

Formula

Equals log(Pi + sqrt(Pi^2 + 1)) = log(A188725).
Equals Pi*Integral_{x=0..1} 1/sqrt((Pi^2)*x^2 + 1) dx.