cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A360571 Triangle read by rows: T(n,k) is the k-th Lie-Betti number of the path graph on n-vertices, n >= 1, 0 <= k <= 2*n - 1.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 1, 3, 6, 6, 3, 1, 1, 4, 11, 16, 16, 11, 4, 1, 1, 5, 17, 33, 48, 48, 33, 17, 5, 1, 1, 6, 24, 58, 107, 140, 140, 107, 58, 24, 6, 1, 1, 7, 32, 92, 203, 329, 424, 424, 329, 203, 92, 32, 7, 1, 1, 8, 41, 136, 347, 668, 1039, 1280, 1280, 1039, 668, 347, 136, 41, 8, 1
Offset: 1

Views

Author

Samuel J. Bevins, Feb 12 2023

Keywords

Examples

			Triangle begins:
      k=0  1  2   3   4    5    6    7     8     9   10   11   12  13 14 15
  n=1:  1  1
  n=2:  1  2  2   1
  n=3:  1  3  6   6   3    1
  n=4:  1  4 11  16  16   11    4    1
  n=5:  1  5 17  33  48   48   33   17     5     1
  n=6:  1  6 24  58 107  140  140  107    58    24    6    1
  n=7:  1  7 32  92 203  329  424  424   329   203   92   32    7   1
  n=8:  1  8 41 136 347  668 1039 1280  1280  1039  668  347  136  41  8  1
		

Crossrefs

Cf. A360572 (cycle graph), A088459 (star graph), A360625 (complete graph), A360938 (ladder graph), A360937 (wheel graph).
Cf. A063782 appears to be half the row sum.

Programs

  • SageMath
    from sage.algebras.lie_algebras.lie_algebra import LieAlgebra
    def LieAlgebraFromGraph(G, Module = QQ):
        ''' Takes a graph and a module (optional) as an input.'''
        d = {}
        for edge in G.edges(): # this defines the relations among the generators of the Lie algebra
            key = ("x" + str(edge[0]), "x" + str(edge[1])) #[x_i, x_j]
            value = {"x_" + str(edge[0]) + "" + str(edge[1]): 1} #x{i,j}
            d[key] = value #appending to the dictionary d
        C = LieAlgebras(Module).WithBasis().Graded() #defines the category that we need to work with.
        C = C.FiniteDimensional().Stratified().Nilpotent() #specifies that the algebras we want should be finite, stratified, and nilpotent
        L = LieAlgebra(Module, d, nilpotent=True, category=C)
        def sort_generators_by_grading(lie_algebra, grading_operator): #this sorts the generators by their grading. In this case, V1 are vertices and V2
            generators = lie_algebra.gens()
            grading = [grading_operator(g) for g in generators] #using the grading operator to split the elements into their respective vector spaces
            sorted_generators = [g for _, g in sorted(zip(grading, generators))]
            grouped_generators = {}
            for g in sorted_generators:
                if grading_operator(g) in grouped_generators:
                    grouped_generators[grading_operator(g)].append(g)
                else:
                    grouped_generators[grading_operator(g)] = [g]
            return grouped_generators
        grading_operator = lambda g: g.degree() #defining the grading operator
        grouped_generators = sort_generators_by_grading(L, grading_operator) #evaluating the function to pull the generators apart
        V1 = grouped_generators[1] #elements from vertices
        V2 = grouped_generators[2] #elements from edges
        return L #, V1, V2 #returns the Lie algebra and the two vector spaces
    def betti_numbers(lie_algebra): #this function will calculate the Lie theoretic Betti numbers and return them as a list
        dims = []
        H = lie_algebra.cohomology()
        for n in range(lie_algebra.dimension() + 1):
            dims.append(H[n].dimension())
        return dims
    def A360571_row(n):
        if n == 1: return [1, 1]
        return betti_numbers(LieAlgebraFromGraph(graphs.PathGraph(n)))
    for n in range(1,7): print(A360571_row(n))

A361518 Decimal expansion of arccoth(Pi).

Original entry on oeis.org

3, 2, 9, 7, 6, 5, 3, 1, 4, 9, 5, 6, 6, 9, 9, 1, 0, 7, 6, 1, 7, 8, 6, 3, 4, 1, 7, 5, 5, 5, 2, 1, 8, 6, 0, 4, 2, 7, 0, 1, 3, 7, 3, 9, 1, 1, 4, 0, 6, 9, 2, 4, 1, 4, 4, 0, 2, 9, 0, 8, 3, 5, 4, 7, 6, 2, 0, 0, 6, 2, 8, 3, 7, 3, 1, 5, 6, 7, 1, 7, 2, 8, 6, 1, 1, 8, 2, 6, 3, 6, 4, 8, 6, 3, 6, 2, 7, 1, 4, 0, 8, 0, 1, 6, 5
Offset: 0

Views

Author

Wolfe Padawer, Mar 14 2023

Keywords

Examples

			0.329765314956699107617863417555218604270137391140692414402908354762...
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 31, page 291.

Crossrefs

Programs

  • Mathematica
    RealDigits[ArcCoth[Pi], 10, 105][[1]]
  • PARI
    atanh(1/Pi) \\ Michel Marcus, Mar 15 2023

Formula

Equals arctanh(1/Pi).
Equals (log(1 + 1/Pi) - log(1 - 1/Pi))/2.
Equals Sum_{k>=0} (Pi^(-2k - 1))/(2k + 1).
Equals Integral_{x=1..(1 + 1/Pi)} 1/(2x - x^2) dx.

A361519 Decimal expansion of arccsch(Pi).

Original entry on oeis.org

3, 1, 3, 1, 6, 5, 8, 8, 0, 4, 5, 0, 8, 6, 8, 3, 7, 5, 8, 7, 1, 8, 6, 9, 3, 0, 8, 2, 6, 5, 7, 0, 5, 9, 3, 1, 5, 2, 5, 1, 4, 2, 0, 4, 5, 5, 2, 0, 2, 1, 0, 1, 0, 5, 6, 4, 1, 5, 1, 0, 7, 0, 6, 4, 7, 2, 5, 8, 1, 9, 7, 3, 7, 6, 3, 4, 8, 0, 7, 5, 2, 2, 8, 5, 6, 2, 5, 3, 8, 0, 9, 8, 6, 0, 6, 7, 8, 0, 5, 0, 1, 8, 6, 6, 0
Offset: 0

Views

Author

Wolfe Padawer, Mar 14 2023

Keywords

Examples

			0.313165880450868375871869308265705931525142045520210105641510706472...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ArcCsch[Pi], 10, 105][[1]]
  • PARI
    asinh(1/Pi) \\ Michel Marcus, Mar 15 2023

Formula

Equals arcsinh(1/Pi).
Equals log(sqrt(1/Pi^2 + 1) + 1/Pi).
Equals Integral_{x=Pi..oo} 1/(x*sqrt(1 + x^2)) dx.

A368135 Triangle read by rows: T(n,k) is the k-th Lie-Betti number of the Fibonacci trees of order n >= 2.

Original entry on oeis.org

1, 2, 2, 1, 1, 4, 11, 16, 16, 11, 4, 1, 1, 7, 33, 95, 212, 344, 444, 444, 344, 212, 95, 33, 7, 1, 1, 12, 90, 454, 1780, 5489, 14036, 29804, 54007, 83404, 111361, 128378, 128378, 111361, 83404, 54007, 29804, 14036, 5489, 1780, 454, 90, 12, 1
Offset: 2

Views

Author

Samuel J. Bevins, Jan 11 2024

Keywords

Examples

			Triangle begins:
  k=0 1  2  3   4   5    6    7    8    9    10    11   12    13   14   15
n=2: 1 2   2  1
n=3: 1 4  11  16   16   11     4     1
n=4: 1 7  33  95  212  344   444   444   344   212     95     33      7      1
n=5: 1 12 90 454 1780 5489 14036 29804 54007 83404 111361 128378 128378 111361 83404 54007 ...
		

Crossrefs

Cf. A360572 (cycle graph), A088459 (star graph), A360625 (complete graph), A360938 (ladder graph), A360937 (wheel graph).

Programs

  • SageMath
    from sage.algebras.lie_algebras.lie_algebra import LieAlgebra, LieAlgebras
    def BettiNumbers(graph):
        D = {}
        for edge in graph.edges():
            e = "x" + str(edge[0])
            f = "x" + str(edge[1])
            D[(e, f)] = {e + f : 1}
        C = (LieAlgebras(QQ).WithBasis().Graded().FiniteDimensional().
             Stratified().Nilpotent())
        L = LieAlgebra(QQ, D, nilpotent=True, category=C)
        H = L.cohomology()
        d = L.dimension() + 1
        return [H[n].dimension() for n in range(d)]
    # Example usage:
    n = 5
    X = BettiNumbers(graphs.FibonacciTree(n))
Showing 1-4 of 4 results.