A088459
Triangle read by rows: T(n,k) represents the number of lozenge tilings of an (n,1,n)-hexagon which include the non-vertical tile above the main diagonal starting in position k+1.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 1, 3, 6, 6, 3, 1, 1, 4, 12, 18, 18, 12, 4, 1, 1, 5, 20, 40, 60, 60, 40, 20, 5, 1, 1, 6, 30, 75, 150, 200, 200, 150, 75, 30, 6, 1, 1, 7, 42, 126, 315, 525, 700, 700, 525, 315, 126, 42, 7, 1, 1, 8, 56, 196, 588, 1176, 1960, 2450, 2450, 1960, 1176, 588, 196, 56, 8, 1
Offset: 1
Christopher Hanusa (chanusa(AT)washington.edu), Nov 14 2003
For example, the number of tilings of a 4,1,4 hexagon which includes the non-vertical tile above the main diagonal starting in position 3 is T(4,2)=12.
Triangle T(n, k) begins:
[1] 1,1,
[2] 1,2, 2, 1,
[3] 1,3, 6, 6, 3, 1,
[4] 1,4,12, 18, 18, 12, 4, 1,
[5] 1,5,20, 40, 60, 60, 40, 20, 5, 1,
[6] 1,6,30, 75, 150, 200, 200, 150, 75, 30, 6, 1,
[7] 1,7,42,126, 315, 525, 700, 700, 525, 315, 126, 42, 7, 1,
[8] 1,8,56,196, 588,1176,1960,2450,2450,1960,1176,588, 196, 56, 8, 1,
[9] 1,9,72,288,1008,2352,4704,7056,8820,8820,7056,4704,2352,1008,288,72,9,1
-
A088459 := proc(n,k)
binomial(n,ceil(k/2))*binomial(n-1,floor(k/2)) ;
end proc:
seq(seq(A088459(n,k),k=0..2*n-1),n=1..10) ; # R. J. Mathar, Apr 02 2017
-
Table[Binomial[n, Ceiling[k/2]] Binomial[n - 1, Floor[k/2]], {n, 10}, {k, 0, 2 n - 1}] // Flatten (* Eric W. Weisstein, Mar 23 2018 *)
A360572
Triangle read by rows: T(n,k) is the k-th Lie-Betti number of the cycle graph on n vertices, n >= 3, 0 <= k <= 2*n.
Original entry on oeis.org
1, 3, 8, 12, 8, 3, 1, 1, 4, 14, 25, 28, 25, 14, 4, 1, 1, 5, 20, 41, 70, 90, 70, 41, 20, 5, 1, 1, 6, 27, 68, 146, 219, 238, 219, 146, 68, 27, 6, 1, 1, 7, 35, 105, 259, 449, 644, 756, 644, 449, 259, 105, 35, 7, 1, 1, 8, 44, 152, 422, 857, 1476, 2012, 2172, 2012, 1476, 857, 422, 152, 44, 8, 1
Offset: 3
Triangle begins:
k=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
n=3 1 3 8 12 8 3 1
n=4 1 4 14 25 28 25 14 4 1
n=5 1 5 20 41 70 90 70 41 20 5 1
n=6 1 6 27 68 146 219 238 219 146 68 27 6 1
n=7 1 7 35 105 259 449 644 756 644 449 259 105 35 7 1
n=8 1 8 44 152 422 857 1476 2012 2172 2012 1476 857 422 152 44 8 1
...
A360625
Triangle read by rows: T(n,k) is the k-th Lie-Betti number of a complete graph on n vertices, n >= 1, k >= 0.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 1, 3, 8, 12, 8, 3, 1, 1, 4, 20, 56, 84, 90, 84, 56, 20, 4, 1, 1, 5, 40, 176, 440, 835, 1423, 1980, 1980, 1423, 835, 440, 176, 40, 5, 1, 1, 6, 70, 441, 1616, 4600, 11984, 26824, 46800, 63254, 70784, 70784, 63254, 46800, 26824, 11984, 4600, 1616, 441, 70, 6, 1
Offset: 1
Triangle begins:
k= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n=1: 1 1
n=2: 1 2 2 1
n=3: 1 3 8 12 8 3 1
n=4: 1 4 20 56 84 90 84 56 20 4 1
n=5: 1 5 40 176 440 835 1423 1980 1980 1423 835 440 176 40 5 1
...
A360937
Triangle read by rows: T(n, k) is the k-th Lie-Betti number of a wheel graph on n vertices, for n >= 3 and k >= 0.
Original entry on oeis.org
1, 3, 8, 12, 8, 3, 1, 1, 4, 20, 56, 84, 90, 84, 56, 20, 4, 1, 1, 5, 32, 108, 212, 371, 547, 547, 371, 212, 108, 32, 5, 1, 1, 6, 45, 171, 442, 1081, 2025, 2616, 2722, 2616, 2025, 1081, 442, 171, 45, 6, 1, 1, 7, 60, 258, 842, 2489, 5440, 8855, 12955, 16785, 16785, 12955, 8855, 5440, 2489, 842, 258, 60, 7, 1
Offset: 3
Triangle T(n, k) begins:
k=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
n=3: 1 3 8 12 8 3 1
n=4: 1 4 20 56 84 90 84 56 20 4 1
n=5: 1 5 32 108 212 371 547 547 371 212 108 32 5 1
n=6: 1 6 45 171 442 1081 2025 2616 2722 2616 2025 1081 442 171 45 6 1
...
A360936
Triangle read by rows: T(n,k) is the k-th Lie-Betti number of the ladder graph on 2*n vertices, n >= 2, k >= 0.
Original entry on oeis.org
1, 2, 2, 1, 1, 4, 14, 25, 28, 25, 14, 4, 1, 1, 6, 32, 89, 204, 357, 437, 437, 357, 204, 89, 32, 6, 1, 1, 8, 54, 207, 680, 1650, 3201, 5310, 6993, 7508, 6993, 5310, 3201, 1650, 680, 207, 54, 8, 1
Offset: 1
Triangle begins:
k=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
n=1: 1 2 2 1
n=2: 1 4 14 25 28 25 14 4 1
n=3: 1 6 32 89 204 357 437 437 357 204 89 32 6 1
n=4: 1 8 54 207 680 1650 3201 5310 6993 7508 6993 5310 3201 1650 680 207 54
...
A361230
Third Lie-Betti number of a path graph on n vertices.
Original entry on oeis.org
0, 1, 6, 16, 33, 58, 92, 136, 191, 258, 338, 432, 541, 666, 808, 968, 1147, 1346, 1566, 1808, 2073, 2362, 2676, 3016, 3383, 3778, 4202, 4656, 5141, 5658, 6208, 6792, 7411, 8066, 8758, 9488, 10257, 11066, 11916, 12808, 13743, 14722, 15746, 16816, 17933
Offset: 1
- Marco Aldi and Samuel Bevins, L_oo-algebras and hypergraphs, arXiv:2212.13608 [math.CO], 2022. See page 9.
- Meera Mainkar, Graphs and two step nilpotent Lie algebras, arXiv:1310.3414 [math.DG], 2013. See page 1.
- Eric Weisstein's World of Mathematics, Path Graph.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
gf := (x^2*(-x^4 + x^3 - 2*x^2 + 2*x + 1))/(x - 1)^4:
ser := series(gf, x, 50): seq(coeff(ser, x, n), n = 1..48); # Peter Luschny, Mar 06 2023
-
def A361230(n):
values = [0,1]
for i in range(3, n+1):
result = (i^3 + 9*i^2 - 40*i + 48)/6
values.append(result)
return values
A362007
Fourth Lie-Betti number of a path graph on n vertices.
Original entry on oeis.org
0, 0, 3, 16, 48, 107, 203, 347, 551, 828, 1192, 1658, 2242, 2961, 3833, 4877, 6113, 7562, 9246, 11188, 13412, 15943, 18807, 22031, 25643, 29672, 34148, 39102, 44566, 50573, 57157, 64353, 72197, 80726, 89978, 99992, 110808
Offset: 1
- Marco Aldi and Samuel Bevins, L_oo-algebras and hypergraphs, arXiv:2212.13608 [math.CO], 2022. See page 9.
- Meera Mainkar, Graphs and two step nilpotent Lie algebras, arXiv:1310.3414 [math.DG], 2013. See page 1.
- Eric Weisstein's World of Mathematics, Path Graph.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
def A362007(n):
values = [0,0,3]
for i in range(4, n+1):
result = (i**4 + 18*i**3 - 97*i**2 + 174*i - 168)/24
values.append(int(result))
return values
A361044
Triangle read by rows. T(n, k) is the k-th Lie-Betti number of the friendship (or windmill) graph, for n >= 1.
Original entry on oeis.org
1, 3, 8, 12, 8, 3, 1, 1, 5, 24, 60, 109, 161, 161, 109, 60, 24, 5, 1, 1, 7, 48, 168, 483, 1074, 1805, 2531, 2886, 2531, 1805, 1074, 483, 168, 48, 7, 1
Offset: 1
The triangle T(n, k) starts:
[1] 1, 3, 8, 12, 8, 3, 1;
[2] 1, 5, 24, 60, 109, 161, 161, 109, 60, 24, 5, 1;
[3] 1, 7, 48, 168, 483, 1074, 1805, 2531, 2886, 2531, 1805, 1074, 483, 168, 48, 7, 1;
-
from sage.algebras.lie_algebras.lie_algebra import LieAlgebra, LieAlgebras
def BettiNumbers(graph):
D = {}
for edge in graph.edges():
e = "x" + str(edge[0])
f = "x" + str(edge[1])
D[(e, f)] = {e + f : 1}
C = (LieAlgebras(QQ).WithBasis().Graded().FiniteDimensional().
Stratified().Nilpotent())
L = LieAlgebra(QQ, D, nilpotent=True, category=C)
H = L.cohomology()
d = L.dimension() + 1
return [H[n].dimension() for n in range(d)]
def A361044_row(n):
return BettiNumbers(graphs.FriendshipGraph(n))
for n in range(1, 4): print(A361044_row(n))
A364579
Fifth Lie-Betti number of a path graph on n vertices.
Original entry on oeis.org
0, 0, 1, 11, 48, 140, 329, 668, 1223, 2074, 3316, 5060, 7434, 10584, 14675, 19892, 26441, 34550, 44470, 56476, 70868, 87972, 108141, 131756, 159227, 190994, 227528, 269332, 316942, 370928, 431895, 500484, 577373, 663278, 758954
Offset: 1
-
def A364579_up_to(n):
values = [0, 0, 1, 11]
for i in range(5, n+1):
result = (i**5 + 30*i**4 - 145*i**3 - 270*i**2 + 2424*i - 3360)/120
values.append(int(result))
return values
A364946
Sixth Lie-Betti number of a path graph on n vertices.
Original entry on oeis.org
0, 0, 0, 4, 33, 140, 424, 1039, 2213, 4262, 7606, 12786, 20482, 31532, 46952, 67957, 95983, 132710, 180086, 240352, 316068, 410140, 525848, 666875, 837337, 1041814, 1285382, 1573646, 1912774, 2309532, 2771320, 3306209, 3922979, 4631158, 5441062
Offset: 1
- Paolo Xausa, Table of n, a(n) for n = 1..10000
- Marco Aldi and Samuel Bevins, L_oo-algebras and hypergraphs, arXiv:2212.13608 [math.CO], 2022. See page 9.
- Meera Mainkar, Graphs and two step nilpotent Lie algebras, arXiv:1310.3414 [math.DG], 2013. See page 1.
- Eric Weisstein's World of Mathematics, Path Graph.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
-
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 0, 4, 33, 140, 424, 1039, 2213, 4262, 7606, 12786}, 50] (* Paolo Xausa, May 28 2024 *)
-
def A364946_up_to(n):
values = [0, 0, 0, 4,33]
for i in range(6, n+1):
result = (i**6 + 45*i**5 - 125*i**4 - 2865*i**3 + 23524*i**2 - 76740*i + 98640)/720
values.append(int(result))
return values
Showing 1-10 of 12 results.
Comments