A360951 Expansion of e.g.f. (cosh(x) - 1)*(1 + x)*exp(x).
0, 0, 1, 6, 19, 50, 121, 280, 631, 1398, 3061, 6644, 14323, 30706, 65521, 139248, 294895, 622574, 1310701, 2752492, 5767147, 12058602, 25165801, 52428776, 109051879, 226492390, 469762021, 973078500, 2013265891, 4160749538, 8589934561, 17716740064, 36507221983, 75161927646, 154618822621
Offset: 0
Examples
The 19 set partitions for n=4 are the following: {1,2,3,4}, { }, { } (one of these); {1,2}, { }, {3,4} (6 of these); {1,2}, {3}, {4} (12 of these).
Links
- Index entries for linear recurrences with constant coefficients, signature (6,-13,12,-4).
Crossrefs
Cf. A129953.
Formula
a(n) = 2^(n-1) + n*2^(n-2) - n - 1 for n >= 2.
G.f.: x^2*(1 - 4*x^2 + 2*x^3)/((1 - x)^2*(1 - 2*x)^2). - Stefano Spezia, Mar 04 2023
a(n) = (n + 2)*2^(n-2) - n - 1 = A129953(n) - n - 1 for n >= 2. - Stefano Spezia, Mar 05 2023
Comments