A360971 Number of multisets of size n with elements from [n] whose element sum is larger than the product of all elements.
0, 0, 2, 4, 6, 8, 12, 14, 17, 20, 23, 26, 30, 33, 38, 41, 44, 47, 52, 55, 60, 63, 68, 71, 76, 78, 84, 89, 93, 97, 103, 106, 111, 115, 121, 124, 128, 131, 138, 142, 146, 151, 159, 162, 168, 171, 176, 181, 187, 190, 196, 201, 206, 210, 218, 221, 227, 232, 238
Offset: 0
Keywords
Examples
a(2) = 2: [1,1], [1,2]. a(3) = 4: [1,1,1], [1,1,2], [1,2,2], [1,1,3]. a(4) = 6: [1,1,1,1], [1,1,1,2], [1,1,2,2], [1,1,1,3], [1,1,2,3], [1,1,1,4]. a(8) = 17: [1,1,1,1,1,1,1,1], [1,1,1,1,1,1,1,2], [1,1,1,1,1,1,2,2], [1,1,1,1,1,2,2,2], [1,1,1,1,1,1,1,3], [1,1,1,1,1,1,2,3], [1,1,1,1,1,1,3,3], [1,1,1,1,1,1,1,4], [1,1,1,1,1,1,2,4], [1,1,1,1,1,1,3,4], [1,1,1,1,1,1,1,5], [1,1,1,1,1,1,2,5], [1,1,1,1,1,1,1,6], [1,1,1,1,1,1,2,6], [1,1,1,1,1,1,1,7], [1,1,1,1,1,1,2,7], [1,1,1,1,1,1,1,8].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..400
Programs
-
Maple
b:= proc(n, i, s, p) `if`(s+n*i<=p, 0, `if`(n=0 or i=1, 1, g(n, i, s, p))) end: g:= proc(n, i, s, p) option remember; add(b(n-1, j, s+j, p*j), j=1..i) end: a:= n-> b(n$2, 0, 1): seq(a(n), n=0..60);
-
Mathematica
b[n_, i_, s_, p_] := If[s + n*i <= p, 0, If[n == 0 || i == 1, 1, g[n, i, s, p]]]; g[n_, i_, s_, p_] := g[n, i, s, p] = Sum[b[n-1, j, s+j, p*j], {j, 1, i}]; a[n_] := b[n, n, 0, 1]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Dec 09 2023, after Alois P. Heinz *)