A361032 Square array read by ascending antidiagonals: T(n,k) = F(n) * (4*k)!/(k!*(k + n + 1)!^3), where F(n) = (1/8)*(4*n + 4)!/(n + 1)!; n, k >= 0.
3, 315, 9, 46200, 280, 280, 7882875, 17325, 3675, 17325, 1466593128, 1513512, 116424, 116424, 1513512, 288592936632, 162954792, 5885880, 2134440, 5885880, 162954792, 59064793444800, 20193091776, 399072960, 67953600, 67953600, 399072960, 20193091776, 12445136556298875
Offset: 0
Examples
The square array with rows n >= 0 and columns k >= 0 begins: n\k| 0 1 2 3 4 ... ---------------------------------------------------------------------- 0 | 3 9 280 17325 1513512 ... 1 | 315 280 3675 116424 5885880 ... 2 | 46200 17325 116424 2134440 67953600 ... 3 | 7882875 1513512 5885880 67953600 1449322875 ... 4 | 1466593128 162954792 399072960 3086579925 46235189000 ... 5 | ... ... As a triangle: Row 0 | 3 1 | 315 9 2 | 46200 280 280 3 | 7882875 17325 3675 17325 4 | 1466593128 1513512 116424 116424 1513512 5 | 288592936632 162954792 5885880 2134440 5885880 162954792
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (first 51 antidiagonals)
- Ira M. Gessel, Super ballot numbers, J. Symbolic Comp., 14 (1992), 179-194.
Programs
-
Maple
# as a square array T := proc (n, k) (-1)^k*(1/8)*256^(n+1+k)*binomial(n+1/4, n+1+k)*binomial(n+2/4, n+1+k)* binomial(n+3/4, n+1+k); end proc: for n from 0 to 10 do seq(T(n, k), k = 0..10); end do; # as a triangle T := proc (n, k) (-1)^k*(1/8)*256^(n+1+k)*binomial(n+1/4, n+1+k)*binomial(n+2/4, n+1+k)* binomial(n+3/4, n+1+k); end proc: for n from 0 to 10 do seq(T(n-k, k), k = 0..n); end do;
-
PARI
T(n,k) = (-1)^k*(1/8)*256^(n+k+1)*binomial(n+1/4, n+k+1)*binomial(n+1/2, n+k+1)* binomial(n+3/4, n+k+1) \\ Andrew Howroyd, Jan 05 2024
Formula
T(n,k) = (-1)^k*(1/8)*256^(n+k+1)*binomial(n+1/4, n+k+1)*binomial(n+1/2, n+k+1)* binomial(n+3/4, n+k+1).
P-recursive: (n + k + 1)^3*T(n,k) = 4*(4*k - 1)*(4*k - 2)*(4*k - 3)*T(n,k-1) with T(n,0) = (1/8)*(4*n + 4)!/(n + 1)!^4 = (1/8)*A008977(n+1).
(n + k + 1)^3*T(n,k) = 4*(4*n + 1)*(4*n + 2)*(4*n + 3)*T(n-1,k) with T(0,k) = 3*(4*k)!/(k!*(k+1)!^3) = A361033(k).
T(n,k) = (1/2) * (1/(2*Pi))^3 * 256^(n+k+1) * Integral_{x = 0..1} (1 - x)^(n+1/4)*x^(k-1/4) dx * Integral_{x = 0..1} (1 - x)^(n+1/2)*x^(k-1/2) dx * Integral_{x = 0..1} (1 - x)^(n+3/4)*x^(k-3/4) dx.
Comments