A361033 a(n) = 3*(4*n)!/(n!*(n+1)!^3).
3, 9, 280, 17325, 1513512, 162954792, 20193091776, 2768662192725, 409716429837000, 64358256798795960, 10605621798062141760, 1817833036248401270280, 321997225483126007438400, 58649494641569379926280000, 10941649720331183519046796800, 2084191938036600263793119045925
Offset: 0
Programs
-
Maple
seq(3*(4*n)!/(n!*(n+1)!^3), n = 0..20);
-
Mathematica
Table[3 (4n)!/(n! ((n+1)!)^3),{n,0,15}] (* Harvey P. Dale, Jul 30 2024 *)
Formula
a(n) = 3*A008977(n)/(n+1)^3.
a(n) = (3/4)*A008977(n+1)/((4*n+1)*(4*n+2)*(4*n+3)).
P-recursive: a(n) = 4*(4*n-1)*(4*n-2)*(4*n-3)/(n+1)^3 * a(n-1) with a(0) = 3.
The o.g.f. A(x) satisfies the differential equation
x^3*(1 - 256*x)*A(x)''' + x^2*(6 - 1152*x)*A(x)'' + x*(7 - 816*x)*A(x)' + (1 - 24*x)*A(x) - 3 = 0 with A(0) = 3, A'(0) = 9 and A''(0) = 560.
a(n) ~ 3*sqrt(1/(2*Pi^3)) * 2^(8*n)/n^(9/2).
Comments