A361037 a(n) = 20*(3*n)!/((2*n)!*(n+2)!).
10, 10, 25, 84, 330, 1430, 6630, 32300, 163438, 852150, 4552275, 24812400, 137547000, 773564328, 4405019090, 25357898940, 147375745990, 863805209750, 5101386767295, 30332569967700, 181465130121450, 1091677288630950
Offset: 0
Links
- Ira M. Gessel, Super ballot numbers, J. Symbolic Comp., 14 (1992), 179-194.
Programs
-
Maple
seq( 20*(3*n)!/((2*n)!*(n+2)!), n = 0..20);
-
Mathematica
Table[20 (3n)!/((2n)!(n+2)!),{n,0,30}] (* Harvey P. Dale, Aug 05 2024 *)
Formula
a(n) = 10*binomial(3*n,n) - 7*binomial(3*n,n+1) + binomial(3*n,n+2). Thus a(n) is an integer.
P-recursive: 2*(n + 2)(2*n - 1)*a(n) = 3*(3*n - 1)*(3*n - 2)*a(n-1) with a(0) = 10.
a(n) ~ (27/4)^n * 10*sqrt(3/Pi)/n^(5/2).
The o.g.f. satisfies the differential equation
x^2*(27*x - 4)*A''(x) + 2*x*(27*x - 5)*A'(x) + 2*(3*x + 2)*A(x) - 40 = 0, with A(0) = 10 and A'(0) = 10.
Comments