A361044 Triangle read by rows. T(n, k) is the k-th Lie-Betti number of the friendship (or windmill) graph, for n >= 1.
1, 3, 8, 12, 8, 3, 1, 1, 5, 24, 60, 109, 161, 161, 109, 60, 24, 5, 1, 1, 7, 48, 168, 483, 1074, 1805, 2531, 2886, 2531, 1805, 1074, 483, 168, 48, 7, 1
Offset: 1
Examples
The triangle T(n, k) starts: [1] 1, 3, 8, 12, 8, 3, 1; [2] 1, 5, 24, 60, 109, 161, 161, 109, 60, 24, 5, 1; [3] 1, 7, 48, 168, 483, 1074, 1805, 2531, 2886, 2531, 1805, 1074, 483, 168, 48, 7, 1;
Links
- Marco Aldi and Samuel Bevins, L_oo-algebras and hypergraphs, arXiv:2212.13608 [math.CO], 2022. See page 9.
- Meera G. Mainkar, Graphs and two step nilpotent Lie algebras, arXiv:1310.3414 [math.DG], 2013. See page 1.
- Eric Weisstein's World of Mathematics, Dutch Windmill Graph.
- Wikipedia, Friendship Graph.
Crossrefs
Programs
-
SageMath
from sage.algebras.lie_algebras.lie_algebra import LieAlgebra, LieAlgebras def BettiNumbers(graph): D = {} for edge in graph.edges(): e = "x" + str(edge[0]) f = "x" + str(edge[1]) D[(e, f)] = {e + f : 1} C = (LieAlgebras(QQ).WithBasis().Graded().FiniteDimensional(). Stratified().Nilpotent()) L = LieAlgebra(QQ, D, nilpotent=True, category=C) H = L.cohomology() d = L.dimension() + 1 return [H[n].dimension() for n in range(d)] def A361044_row(n): return BettiNumbers(graphs.FriendshipGraph(n)) for n in range(1, 4): print(A361044_row(n))
Comments