A361078 Numbers k for which k = gcd(k', k"), where k' is the arithmetic derivative of k (A003415) and k" is the second derivative of k (A068346).
4, 16, 27, 64, 108, 432, 729, 1024, 2916, 3125, 4096, 6912, 12500, 16384, 19683, 27648, 46656, 50000, 84375, 110592, 186624, 314928, 337500, 746496, 800000, 823543, 1048576, 1259712, 2125764, 2278125, 3200000, 3294172, 4194304, 5038848, 5400000, 7077888, 8503056
Offset: 1
Keywords
Examples
4' = 4, 4" = 4 and gcd(4', 4") = gcd(4, 4) = 4, so 4 is a term. 16' = 32, 16" = 32' = 80 and gcd(16', 16") = gcd(32, 80) = 16, so 16 is a term.
Programs
-
Magma
f:=func
; [n:n in [2..100000]|not IsPrime(n) and Gcd(Floor(f(n)),Floor(f(Floor(f(n))))) eq n]; -
Mathematica
d[0] = d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[10^6], GCD[d[#], d[d[#]]] == # &] (* Amiram Eldar, Mar 03 2023 *)
-
PARI
ader(n) = vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415 isok(k) = gcd(ader(k), ader(ader(k))) == k; \\ Michel Marcus, Mar 03 2023
Comments