A361099 a(n) = n + 2*binomial(n,2) + 3*binomial(n,3) + 4*binomial(n,4).
0, 1, 4, 12, 32, 75, 156, 294, 512, 837, 1300, 1936, 2784, 3887, 5292, 7050, 9216, 11849, 15012, 18772, 23200, 28371, 34364, 41262, 49152, 58125, 68276, 79704, 92512, 106807, 122700, 140306, 159744, 181137, 204612, 230300, 258336, 288859, 322012, 357942, 396800, 438741
Offset: 0
Examples
The 294 set partitions for n=7 are the following (where the element selected from the second set is in parentheses): { }, {(1),2,3,4,5,6,7} (7 of these); {1}, {(2),3,4,5,6,7} (42 of these); {1,2}, {(3),4,5,6,7} (105 of these); {1,2,3}, {(4),5,6,7} (140 of these).
Links
- Paolo Xausa, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Mathematica
Table[n^2*(n*(n - 3) + 8)/6, {n, 0, 50}] (* Paolo Xausa, Jun 10 2024 *)
-
Python
def A361099(n): return n**2*(n*(n - 3) + 8)//6 # Chai Wah Wu, Mar 24 2023
Formula
E.g.f.: (1 + x + x^2/2 + x^3/6)*x*exp(x).
From Stefano Spezia, Mar 04 2023: (Start)
O.g.f.: x*(1 - x + 2*x^2 + 2*x^3)/(1 - x)^5.
Comments