cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361151 a(n) = K(n-1) + K(n) + K(n+1), where K(n) = A341711(floor(n/2)).

Original entry on oeis.org

2, 7, 11, 29, 43, 97, 137, 283, 389, 749, 1003, 1839, 2421, 4259, 5515, 9391, 12011, 19887, 25143, 40665, 50931, 80679, 100161, 155847, 192051, 294047, 359839, 543127, 660623, 984239, 1190359, 1752799, 2109119, 3072351, 3679263, 5307023, 6327871, 9044395
Offset: 0

Views

Author

N. J. A. Sloane, Mar 02 2023

Keywords

Examples

			n=4: 5+19+19 = 43 = a(4).
		

Crossrefs

Cf. A341711.

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; nops(invphi(n)) end:
    g:= proc(n) option remember; `if`(n=0, 1, add(
          g(n-j)*add(d*b(d), d=divisors(j)), j=1..n)/n)
        end:
    a:= n-> add(g(2*floor((i+n)/2)+1)/2, i=-1..1):
    seq(a(n), n=0..40);  # Alois P. Heinz, Mar 02 2023
  • Mathematica
    nmax1 = 40;
    terms = nmax1 + 2; (* number of terms of A120963 *)
    nmax2 = Floor[terms/2] - 1;
    S[m_] := S[m] = CoefficientList[Product[1/(1 - x^EulerPhi[k]), {k, 1, m*terms}] + O[x]^(terms + 1), x];
    S[m = 1]; S[m++]; While[S[m] != S[m - 1], m++];
    A120963 = S[m];
    A341711[n_ /; 0 <= n <= nmax2] := A120963[[2 n + 2]]/2;
    K[n_] := A341711[Floor[n/2]];
    a[n_] := If[n == 0, 2, K[n - 1] + K[n] + K[n + 1]];
    Table[a[n], {n, 0, nmax1}] (* Jean-François Alcover, Dec 01 2023 *)