A361151 a(n) = K(n-1) + K(n) + K(n+1), where K(n) = A341711(floor(n/2)).
2, 7, 11, 29, 43, 97, 137, 283, 389, 749, 1003, 1839, 2421, 4259, 5515, 9391, 12011, 19887, 25143, 40665, 50931, 80679, 100161, 155847, 192051, 294047, 359839, 543127, 660623, 984239, 1190359, 1752799, 2109119, 3072351, 3679263, 5307023, 6327871, 9044395
Offset: 0
Keywords
Examples
n=4: 5+19+19 = 43 = a(4).
Crossrefs
Cf. A341711.
Programs
-
Maple
with(numtheory): b:= proc(n) option remember; nops(invphi(n)) end: g:= proc(n) option remember; `if`(n=0, 1, add( g(n-j)*add(d*b(d), d=divisors(j)), j=1..n)/n) end: a:= n-> add(g(2*floor((i+n)/2)+1)/2, i=-1..1): seq(a(n), n=0..40); # Alois P. Heinz, Mar 02 2023
-
Mathematica
nmax1 = 40; terms = nmax1 + 2; (* number of terms of A120963 *) nmax2 = Floor[terms/2] - 1; S[m_] := S[m] = CoefficientList[Product[1/(1 - x^EulerPhi[k]), {k, 1, m*terms}] + O[x]^(terms + 1), x]; S[m = 1]; S[m++]; While[S[m] != S[m - 1], m++]; A120963 = S[m]; A341711[n_ /; 0 <= n <= nmax2] := A120963[[2 n + 2]]/2; K[n_] := A341711[Floor[n/2]]; a[n_] := If[n == 0, 2, K[n - 1] + K[n] + K[n + 1]]; Table[a[n], {n, 0, nmax1}] (* Jean-François Alcover, Dec 01 2023 *)