A361175 The sum of the exponential infinitary divisors of n.
1, 2, 3, 6, 5, 6, 7, 10, 12, 10, 11, 18, 13, 14, 15, 18, 17, 24, 19, 30, 21, 22, 23, 30, 30, 26, 30, 42, 29, 30, 31, 34, 33, 34, 35, 72, 37, 38, 39, 50, 41, 42, 43, 66, 60, 46, 47, 54, 56, 60, 51, 78, 53, 60, 55, 70, 57, 58, 59, 90, 61, 62, 84, 78, 65, 66, 67
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Andrew V. Lelechenko, Exponential and infinitary divisors, Ukrainian Mathematical Journal, Vol. 68, No. 8 (2017), pp. 1222-1237; arXiv preprint, arXiv:1405.7597 [math.NT] (2014).
- Index entries for sequences related to divisors of numbers.
Programs
-
Mathematica
idivs[1] = {1}; idivs[n_] := Sort @ Flatten @ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, e_Integer} :> p^Select[Range[0, e], BitOr[e, #] == e &])]; f[p_, e_] := Total[p^idivs[e]]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
isidiv(d, f) = {if (d==1, return (1)); for (k=1, #f~, bne = binary(f[k, 2]); bde = binary(valuation(d, f[k, 1])); if (#bde < #bne, bde = concat(vector(#bne-#bde), bde)); for (j=1, #bne, if (! bne[j] && bde[j], return (0)); ); ); return (1); } \\ Michel Marcus at A077609 ff(p, e) = sumdiv(e, d, if(isidiv(d, factor(e)), p^d, 0)); a(n) = {my(f=factor(n)); prod(i=1, #f~, ff(f[i, 1], f[i, 2])); }
Formula
Multiplicative with a(p^e) = Sum_{d infinitary divisor of e} p^d.
Comments