cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361175 The sum of the exponential infinitary divisors of n.

Original entry on oeis.org

1, 2, 3, 6, 5, 6, 7, 10, 12, 10, 11, 18, 13, 14, 15, 18, 17, 24, 19, 30, 21, 22, 23, 30, 30, 26, 30, 42, 29, 30, 31, 34, 33, 34, 35, 72, 37, 38, 39, 50, 41, 42, 43, 66, 60, 46, 47, 54, 56, 60, 51, 78, 53, 60, 55, 70, 57, 58, 59, 90, 61, 62, 84, 78, 65, 66, 67
Offset: 1

Views

Author

Amiram Eldar, Mar 03 2023

Keywords

Comments

First differs from A322857 at n = 256.
The exponential infinitary divisors of n = Product_i p(i)^e(i) are all the numbers of the form Product_i p(i)^d(i) where d(i) is an infinitary divisor of e(i).
The number of exponential infinitary divisors of n is A307848(n).

Crossrefs

Similar sequences: A051377, A322857, A323309, A361174.

Programs

  • Mathematica
    idivs[1] = {1}; idivs[n_] := Sort @ Flatten @ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, e_Integer} :> p^Select[Range[0, e], BitOr[e, #] == e &])];
    f[p_, e_] := Total[p^idivs[e]]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    isidiv(d, f) = {if (d==1, return (1)); for (k=1, #f~, bne = binary(f[k, 2]); bde = binary(valuation(d, f[k, 1])); if (#bde < #bne, bde = concat(vector(#bne-#bde), bde)); for (j=1, #bne, if (! bne[j] && bde[j], return (0)); ); ); return (1); } \\ Michel Marcus at A077609
    ff(p, e) = sumdiv(e, d, if(isidiv(d, factor(e)), p^d, 0));
    a(n) = {my(f=factor(n)); prod(i=1, #f~, ff(f[i, 1], f[i, 2])); }

Formula

Multiplicative with a(p^e) = Sum_{d infinitary divisor of e} p^d.