cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361185 Number of chordless cycles in the n X n rook complement graph.

Original entry on oeis.org

0, 0, 15, 264, 1700, 6900, 21315, 54880, 123984, 253800, 480975, 856680, 1450020, 2351804, 3678675, 5577600, 8230720, 11860560, 16735599, 23176200, 31560900, 42333060, 56007875, 73179744, 94530000, 120835000, 152974575, 191940840, 238847364, 294938700
Offset: 1

Views

Author

Eric W. Weisstein, Mar 03 2023

Keywords

Comments

Using the convention that chordless cycles have length >= 4.
All chordless cycles in the rook complement graph have a cycle length of either 4 or 6. - Andrew Howroyd, Mar 03 2023

Crossrefs

Programs

  • Mathematica
    Table[(n - 2) (n - 1)^2 n^2 (6 n - 13)/12, {n, 20}]
    LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 15, 264, 1700, 6900, 21315}, 20]
    CoefficientList[Series[x^2 (15 + 159 x + 167 x^2 + 19 x^3)/(1 - x)^7, {x, 0, 20}], x]
  • PARI
    a(n) = 2*binomial(n,2)*binomial(n,3) + 9*binomial(n,3)^2 + 12*binomial(n,4)*binomial(n,2) \\ Andrew Howroyd, Mar 03 2023

Formula

a(n) = 2*binomial(n,2)*binomial(n,3) + 9*binomial(n,3)^2 + 12*binomial(n,4)*binomial(n,2). - Andrew Howroyd, Mar 03 2023
a(n) = (n - 2)*(n - 1)^2*n^2*(6*n - 13)/12.
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7).
G.f.: x^3*(15+159*x+167*x^2+19*x^3)/(1-x)^7.

Extensions

Terms a(8) and beyond from Andrew Howroyd, Mar 03 2023