A361185 Number of chordless cycles in the n X n rook complement graph.
0, 0, 15, 264, 1700, 6900, 21315, 54880, 123984, 253800, 480975, 856680, 1450020, 2351804, 3678675, 5577600, 8230720, 11860560, 16735599, 23176200, 31560900, 42333060, 56007875, 73179744, 94530000, 120835000, 152974575, 191940840, 238847364, 294938700
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Chordless Cycle
- Eric Weisstein's World of Mathematics, Rook Complement Graph
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
Mathematica
Table[(n - 2) (n - 1)^2 n^2 (6 n - 13)/12, {n, 20}] LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 15, 264, 1700, 6900, 21315}, 20] CoefficientList[Series[x^2 (15 + 159 x + 167 x^2 + 19 x^3)/(1 - x)^7, {x, 0, 20}], x]
-
PARI
a(n) = 2*binomial(n,2)*binomial(n,3) + 9*binomial(n,3)^2 + 12*binomial(n,4)*binomial(n,2) \\ Andrew Howroyd, Mar 03 2023
Formula
a(n) = 2*binomial(n,2)*binomial(n,3) + 9*binomial(n,3)^2 + 12*binomial(n,4)*binomial(n,2). - Andrew Howroyd, Mar 03 2023
a(n) = (n - 2)*(n - 1)^2*n^2*(6*n - 13)/12.
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7).
G.f.: x^3*(15+159*x+167*x^2+19*x^3)/(1-x)^7.
Extensions
Terms a(8) and beyond from Andrew Howroyd, Mar 03 2023
Comments