A361194 E.g.f. satisfies A(x) = exp( -3*x*A(x) ) / (1-x).
1, -2, 17, -237, 4893, -133683, 4567905, -187666587, 9017657433, -496470972951, 30824023641669, -2131090659947439, 162397790115179733, -13525005928296072915, 1222285110682680848169, -119135392516302191619507, 12458374493322416970025521
Offset: 0
Keywords
Links
- Winston de Greef, Table of n, a(n) for n = 0..338
- Eric Weisstein's World of Mathematics, Lambert W-Function.
Programs
-
PARI
a(n) = n!*sum(k=0, n, (-3)^k*(k+1)^(k-1)*binomial(n, k)/k!);
-
PARI
my(N=20, x='x+O('x^N)); Vec(serlaplace(lambertw(3*x/(1-x))/(3*x)))
Formula
a(n) = n! * Sum_{k=0..n} (-3)^k * (k+1)^(k-1) * binomial(n,k)/k!.
E.g.f.: LambertW( 3*x/(1-x) ) / (3*x).