cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A361193 E.g.f. satisfies A(x) = exp( -2*x*A(x) ) / (1-x).

Original entry on oeis.org

1, -1, 6, -50, 648, -10952, 232336, -5919664, 176435328, -6024464000, 231972167424, -9946181374208, 470038191434752, -24276240445152256, 1360508977539004416, -82233680186863536128, 5332689963474238341120, -369321737420738845638656
Offset: 0

Views

Author

Seiichi Manyama, Mar 03 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (-2)^k*(k+1)^(k-1)*binomial(n, k)/k!);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(lambertw(2*x/(1-x))/(2*x)))

Formula

a(n) = n! * Sum_{k=0..n} (-2)^k * (k+1)^(k-1) * binomial(n,k)/k!.
E.g.f.: LambertW( 2*x/(1-x) ) / (2*x).

A361214 E.g.f. satisfies A(x) = exp( 3*x*A(x) / (1+x) ).

Original entry on oeis.org

1, 3, 21, 288, 5841, 158148, 5370003, 219641922, 10518990129, 577629889848, 35788733371179, 2470154920005798, 187970878034549001, 15636177199793409444, 1411635193678825868979, 137469669176542404342042, 14364540773583252035937633
Offset: 0

Views

Author

Seiichi Manyama, Mar 04 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(-1)^n*n!*Sum[(-3)^k*(k + 1)^(k - 1)*Binomial[n - 1, n - k]/k!, {k, 0, n}], {n, 0, 20}] (* Wesley Ivan Hurt, May 25 2024 *)
  • PARI
    a(n) = (-1)^n*n!*sum(k=0, n, (-3)^k*(k+1)^(k-1)*binomial(n-1, n-k)/k!);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-3*x/(1+x)))))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(-(1+x)/(3*x)*lambertw(-3*x/(1+x))))

Formula

a(n) = (-1)^n * n! * Sum_{k=0..n} (-3)^k * (k+1)^(k-1) * binomial(n-1,n-k)/k!.
E.g.f.: exp ( -LambertW(-3*x/(1+x)) ).
E.g.f.: -(1+x)/(3*x) * LambertW(-3*x/(1+x)).
Showing 1-2 of 2 results.