cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361230 Third Lie-Betti number of a path graph on n vertices.

Original entry on oeis.org

0, 1, 6, 16, 33, 58, 92, 136, 191, 258, 338, 432, 541, 666, 808, 968, 1147, 1346, 1566, 1808, 2073, 2362, 2676, 3016, 3383, 3778, 4202, 4656, 5141, 5658, 6208, 6792, 7411, 8066, 8758, 9488, 10257, 11066, 11916, 12808, 13743, 14722, 15746, 16816, 17933
Offset: 1

Views

Author

Samuel J. Bevins, Mar 05 2023

Keywords

Comments

Sequence T(n,3) in A360571.

Crossrefs

Cf. A360571 (path graph triangle).

Programs

  • Maple
    gf := (x^2*(-x^4 + x^3 - 2*x^2 + 2*x + 1))/(x - 1)^4:
    ser := series(gf, x, 50): seq(coeff(ser, x, n), n = 1..48); # Peter Luschny, Mar 06 2023
  • Python
    def A361230(n):
        values = [0,1]
        for i in range(3, n+1):
            result = (i^3 + 9*i^2 - 40*i + 48)/6
            values.append(result)
        return values

Formula

a(1) = 0, a(2) = 1, a(n) = (n^3 + 9*n^2 - 40*n + 48)/6 for n >= 3.
a(n) = [x^n] (x^2*(-x^4 + x^3 - 2*x^2 + 2*x + 1))/(x - 1)^4. - Peter Luschny, Mar 06 2023
E.g.f.: exp(x)*(8 - 5*x + 2*x^2 + x^3/6) - 8 - 3*x - x^2/2. - Stefano Spezia, Mar 02 2025