A361242 Number of nonequivalent noncrossing cacti with n nodes up to rotation.
1, 1, 1, 2, 7, 26, 144, 800, 4995, 32176, 215914, 1486270, 10471534, 75137664, 547756650, 4047212142, 30255934851, 228513227318, 1741572167716, 13380306774014, 103542814440878, 806476983310180, 6318519422577854, 49769050291536486, 393933908000862866
Offset: 0
Keywords
Examples
The a(3) = 2 nonequivalent cacti have the following blocks: {{1,2}, {1,3}}, {{1,2,3}}. Graphically these can be represented: 1 1 / \ / \ 2 3 2----3 . The a(4) = 7 nonequivalent cacti have the following blocks: {{1,2}, {1,3}, {1,4}}, {{1,2}, {1,3}, {3,4}}, {{1,2}, {1,4}, {2,3}}, {{1,2}, {2,4}, {3,4}}, {{1,2}, {1,3,4}}, {{1,2}, {2,3,4}}, {{1,2,3,4}}. Graphically these can be represented: 1---4 1 4 1---4 1 4 | \ | \ | | | / | 2 3 2 3 2---3 2 3 . 1---4 1 4 1---4 | \ | | / | | | 2 3 2---3 2---3
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
- Wikipedia, Cactus graph.
- Index entries for sequences related to cacti.
Programs
-
PARI
\\ Here F(n) is the g.f. of A003168. F(n) = {1 + serreverse(x/((1+2*x)*(1+x)^2) + O(x*x^n))} seq(n) = {my(f=F(n-1)); Vec(1 + intformal(f) - sum(d=2, n, eulerphi(d) * log(1-subst(x*f^2 + O(x^(n\d+1)),x,x^d)) / d), -n-1)}
Comments