A361286 Total over all partitions lambda of n, of factors of s_lambda in the skew Schur function s_( nu/lambda ) with (s_lambda)^2 = Sum( C(nu, lambda, lambda) s_nu ).
1, 2, 6, 18, 50, 138, 430, 1242, 3666, 10938, 34598, 108098, 338634, 1058370
Offset: 0
Examples
For n=3, {3} -> 4 s_{3} + 2 s_{2,1} {2,1} -> 4 s_{3} + 10 s_{2,1} + 4 s_{1,1,1} and {1,1,1} -> 2 s_{2,1} + 4 s_{1,1,1} so a(3) = 4 + 10 + 4 = 18. Also, s(3)^2 -> s(6)+s(3;3)+s(4;2)+s(5,1) -> {1,1,1,1} ->{1,1,1,1} ->4 s(2;1)^2 ->s(4;2)+s(4;1;1)+s(3;3)+2 s(3;2;1)+s(3;1;1;1)+s(2;2;2)+s(2;2;1;1) -> {1,1,1,2,1,1,1} -> {1,1,1,4,1,1,1} -> 10 s(1;1;1)^2 -> s(2;2;2)+s(2;2;1;1)+s(2;1;1;1;1)+s(1^6) ->{1,1,1,1} ->{1,1,1,1} ->4
Programs
-
Mathematica
(* with 'LRRule' and 'skewschur' defined in http://users.telenet.be/Wouter.Meeussen/ToolBox.nb *) Tr/@ Table[Coefficient[ Total[skewschur[#, \[Lambda], n] & /@ LRRule[\[Lambda], \[Lambda]]], ss[\[Lambda], n] ], {n, 13}, {\[Lambda], Partitions[n]}]; also Table[Total[ Table[Map[Last, Tally[LRRule[\[Lambda], \[Lambda]]] ]^2, {\[Lambda], Partitions[n]}], 2], {n, 13}];
Comments