A361297 Number of n-dimensional cubic lattice walks with 2n steps from origin to origin and avoiding early returns to the origin.
1, 2, 20, 996, 108136, 19784060, 5389230384, 2031493901304, 1009373201680848, 638377781979995244, 500510427096797296240, 476433596774288713285352, 541348750963243079098368768, 723928411313545718524263072248, 1125748074023593276830674831519936
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..212
Programs
-
Maple
b:= proc(n, l) option remember; add(add((h-> `if`(n<= add(v, v=h), 0, `if`(n=1, 1, `if`(h[-1]=0, 0, b(n-1, h)))))(sort(subsop(i=abs(l[i]+j), l))), j=[-1, 1]), i=1..nops(l)) end: a:= n-> `if`(n=0, 1, b(2*n, [0$n])): seq(a(n), n=0..15); # second Maple program: b:= proc(n, i) option remember; `if`(n=0 or i=1, 1, add(b(n-j, i-1)*binomial(n, j)^2, j=0..n)) end: g:= proc(n, k) option remember; `if` (n<1, -1, -add(g(n-i, k)*(2*i)!*b(i, k)/i!^2, i=1..n)) end: a:= n-> abs(g(n$2)): seq(a(n), n=0..15);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1, Sum[b[n - j, i - 1]*Binomial[n, j]^2, {j, 0, n}]]; g[n_, k_] := g[n, k] = If [n < 1, -1, -Sum[g[n - i, k]*(2i)!* b[i, k]/i!^2, {i, 1, n}]]; a[n_] := Abs[g[n, n]]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, May 27 2023, from 2nd Maple program *)
Formula
a(n) = A361397(n,n).
From Vaclav Kotesovec, Apr 23 2023: (Start)
a(n) ~ c * d^n * n^(2*n), where d = 1.138128465642... and c = 1.72802011936...
a(n) ~ A303503(n). (End)
Comments