cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361297 Number of n-dimensional cubic lattice walks with 2n steps from origin to origin and avoiding early returns to the origin.

Original entry on oeis.org

1, 2, 20, 996, 108136, 19784060, 5389230384, 2031493901304, 1009373201680848, 638377781979995244, 500510427096797296240, 476433596774288713285352, 541348750963243079098368768, 723928411313545718524263072248, 1125748074023593276830674831519936
Offset: 0

Views

Author

Alois P. Heinz, Mar 08 2023

Keywords

Comments

a(n) is a multiple of 2n for n>=1.

Crossrefs

Main diagonal of A361397.

Programs

  • Maple
    b:= proc(n, l) option remember; add(add((h-> `if`(n<=
          add(v, v=h), 0, `if`(n=1, 1, `if`(h[-1]=0, 0,
            b(n-1, h)))))(sort(subsop(i=abs(l[i]+j), l))),
              j=[-1, 1]), i=1..nops(l))
        end:
    a:= n-> `if`(n=0, 1, b(2*n, [0$n])):
    seq(a(n), n=0..15);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          add(b(n-j, i-1)*binomial(n, j)^2, j=0..n))
        end:
    g:= proc(n, k) option remember; `if` (n<1, -1,
          -add(g(n-i, k)*(2*i)!*b(i, k)/i!^2, i=1..n))
        end:
    a:= n-> abs(g(n$2)):
    seq(a(n), n=0..15);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1, Sum[b[n - j, i - 1]*Binomial[n, j]^2, {j, 0, n}]];
    g[n_, k_] := g[n, k] = If [n < 1, -1, -Sum[g[n - i, k]*(2i)!* b[i, k]/i!^2, {i, 1, n}]];
    a[n_] := Abs[g[n, n]];
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, May 27 2023, from 2nd Maple program *)

Formula

a(n) = A361397(n,n).
From Vaclav Kotesovec, Apr 23 2023: (Start)
a(n) ~ c * d^n * n^(2*n), where d = 1.138128465642... and c = 1.72802011936...
a(n) ~ A303503(n). (End)