cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A361349 Numbers k such that A361338(k) = 10.

Original entry on oeis.org

17117, 17727, 17749, 18839, 19933, 21761, 22777, 29391, 30397, 31157, 31317, 31643, 33949, 34199, 35909, 39723, 39789, 39797, 39803, 39813, 42973, 44219, 44517, 46347, 47463, 49171, 49771, 49877, 53211, 53751, 57169, 57311, 57769, 57781, 57941, 57943, 57961, 59093
Offset: 1

Views

Author

N. J. A. Sloane, Apr 05 2023

Keywords

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from math import prod
    def A361338(n):
        c, d, m = {n}, set(), 0
        while True:
            c = set(prod(divmod(k,s)) for k in c for i in range(1,len(str(k))) if k%(s:=(r:=10**(i-1))*10)>=r or i==1)
            d |= c
            if (r:=len(d)) == m:
                return sum(1 for q in d if q<10)
            m = r
    def A361349_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:A361338(n)==10,count(max(startvalue,1)))
    A361349_list = list(islice(A361349_gen(),10)) # Chai Wah Wu, Apr 05-06 2023
    
  • Python
    from functools import lru_cache
    from itertools import count, islice
    @lru_cache(maxsize=None)
    def f(n):
        if n < 10: return {n}
        s = str(n)
        return {e for i in range(1, len(s)) if s[i]!="0" or i==len(s)-1 for e in f(int(s[:i])*int(s[i:]))}
    def agen(): # generator of terms
        yield from (k for k in count() if len(f(k)) == 10)
    print(list(islice(agen(), 38))) # Michael S. Branicky, Apr 05 2023

Extensions

a(4)-a(38) from Chai Wah Wu, Apr 05 2023

A361340 a(n) = smallest number with the property that the split-and-multiply technique (see A361338) in base n can produce all n single-digit numbers.

Original entry on oeis.org

15, 23, 119, 167, 12049, 424, 735, 907, 17117, 1250, 307747, 2703, 49225, 9422, 57823, 5437, 2076131, 7747, 639987, 44960, 822799, 11537, 23809465, 24967, 1539917, 109346, 4643181, 26357, 5587832443, 37440, 1885949, 285085, 7782015, 265806, 1250473675, 66524, 8340541, 699890, 158607997, 85684
Offset: 2

Views

Author

N. J. A. Sloane, Apr 04 2023, based on an email from Zachary DeStefano

Keywords

Comments

From Zachary DeStefano, May 17 2023: (Start)
There is a strong linear relationship between n^(n / phi(n)) and a(n) (see A000010 for phi(n)) which results from the final digit falling into subgroups of Z/nZ during split-and-multiply steps. This explains why a(n) is significantly smaller for prime n and significantly larger when n contains several small prime factors (ex. 2 * 3 * 5 = 30) (End)

Examples

			To reach the digits 0 though 9 in base 10 from 17117:
 171*17 -> 290*7  -> 203*0 -> 0
 1711*7 -> 1197*7 -> 837*9 -> 7*533 -> 373*1 -> 37*3  -> 1*11 -> 1*1 -> 1
 171*17 -> 2*907  -> 1*814 -> 8*14  -> 1*12  -> 1*2   -> 2
 1*7117 -> 711*7  -> 49*77 -> 377*3 -> 113*1 -> 1*13  -> 1*3  -> 3
 171*17 -> 2*907  -> 1*814 -> 8*14  -> 11*2  -> 2*2   -> 4
 1711*7 -> 1197*7 -> 837*9 -> 75*33 -> 247*5 -> 1*235 -> 23*5 -> 1*15 -> 1*5  -> 5
 17*117 -> 19*89  -> 169*1 -> 16*9  -> 1*44  -> 4*4   -> 1*6  -> 6
 1711*7 -> 1197*7 -> 837*9 -> 7*533 -> 37*31 -> 11*47 -> 51*7 -> 3*57 -> 17*1 -> 1*7 -> 7
 17*117 -> 1*989  -> 98*9  -> 88*2  -> 1*76  -> 7*6   -> 4*2  -> 8
 1*7117 -> 711*7  -> 49*77 -> 377*3 -> 113*1 -> 11*3  -> 3*3  -> 9
		

Crossrefs

Programs

Extensions

a(21)-a(29) from Michael S. Branicky, Apr 04 2023
a(30)-a(41) from Zachary DeStefano, Apr 05 2023

A361341 Numbers k such that A361338(k) = 2.

Original entry on oeis.org

112, 113, 114, 115, 116, 117, 119, 122, 123, 124, 126, 127, 128, 129, 132, 133, 134, 135, 136, 137, 138, 142, 143, 144, 146, 147, 153, 155, 157, 159, 162, 163, 166, 168, 169, 172, 173, 175, 176, 177, 178, 182, 183, 184, 186, 193, 198, 199, 211, 213, 221, 224, 228, 229, 231, 233, 234, 235, 241, 243, 244, 248, 253, 259, 264, 268, 272, 273, 275, 281, 282
Offset: 1

Views

Author

N. J. A. Sloane, Apr 05 2023

Keywords

Examples

			From _M. F. Hasler_, Apr 08 2023: (Start)
From 112 we can get 1*12 = 12 and 11*2 = 22, then 1*2 = 2 and 2*2 = 4.
All smaller numbers have only one possible outcome: for n = 111 the only possible outcome is 1, for 99 < n < 111, the outcome is always 0, and for 2-digit numbers there is only one possibility for the split-and-multiply operation and the result is always smaller than the initial value. (End)
		

Crossrefs

Programs

  • Mathematica
    -1 + Position[#, 2][[All, 1]] &@ Flatten@ Array[Map[Total, Transpose@ ImageData[ColorNegate@ Import["https://oeis.org/A361338/a361338_2.png", "PNG"], "Bit"][[10 # + 1 ;; 10 # + 10, 1 ;; 1000]]] &, 1, 0] (* Michael De Vlieger, Apr 06 2023, using image at A361338 *)
  • PARI
    select( {is_A361341(n)=A361338(n)==2}, [0..300]) \\ M. F. Hasler, Apr 08 2023

A361339 a(n) is the smallest k such that A361338(k) = n.

Original entry on oeis.org

1, 112, 139, 219, 373, 719, 1133, 1919, 3377, 17117
Offset: 1

Views

Author

N. J. A. Sloane, Apr 04 2023, based on an email from Michael S. Branicky

Keywords

Examples

			     a(n) n  {the digits reached}
       1  1  {1}
     112  2  {2, 4}
     139  3  {8, 4, 7}
     219  4  {8, 2, 4, 6}
     373  5  {1, 2, 4, 6, 8}
     719  6  {0, 2, 4, 6, 8, 9}
    1133  7  {0, 2, 4, 6, 7, 8, 9}
    1919  8  {0, 2, 4, 5, 6, 7, 8, 9}
    3377  9  {0, 2, 3, 4, 5, 6, 7, 8, 9}
   17117 10  {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
		

Crossrefs

Programs

  • Mathematica
    With[{s = Import["https://oeis.org/A361338/b361338.txt", "Data"][[All, -1]]}, {1}~Join~Table[-1 + FirstPosition[s, k][[1]], {k, 2, 10}]] (* Michael De Vlieger, Apr 04 2023, using bfile at A361338 *)
  • Python
    from itertools import count
    def agen():
        n, adict = 1, dict()
        for k in count(1):
            v = A361338(k) # uses A361338() and reach1() in A361338
            if v not in adict: adict[v] = k
            while n in adict: yield adict[n]; n += 1
            if n == 11: return
    print(list(agen())) # Michael S. Branicky, Apr 04 2023

A361342 Numbers k such that A361338(k) = 3.

Original entry on oeis.org

139, 148, 149, 167, 179, 187, 188, 189, 196, 197, 216, 217, 218, 226, 236, 238, 246, 247, 249, 256, 258, 261, 262, 263, 266, 269, 271, 276, 279, 283, 287, 288, 292, 294, 324, 329, 334, 337, 338, 339, 341, 342, 347, 349, 354, 362, 364, 368, 369, 372, 374, 376, 381, 382, 383, 386, 391, 392, 396, 399, 413, 416, 417, 423, 427, 428, 431, 436, 442, 443, 446
Offset: 1

Views

Author

N. J. A. Sloane, Apr 05 2023

Keywords

Comments

{0, 6, 8} is by far the most frequent possible outcome for the numbers in this sequence (almost 60% of all cases up to 10^4, next most frequent being {0, 2, 6} and {0, 4, 6} and {0, 4, 8} in about 8% of the cases each). Up to 10^4, no term in this sequence can ever produce a 3. - M. F. Hasler, Apr 08 2023

Crossrefs

Programs

  • Mathematica
    -1 + Position[#, 3][[All, 1]] &@ Flatten@ Array[Map[Total, Transpose@ ImageData[ColorNegate@ Import["https://oeis.org/A361338/a361338_2.png", "PNG"], "Bit"][[10 # + 1 ;; 10 # + 10, 1 ;; 1000]]] &, 1, 0] (* Michael De Vlieger, Apr 06 2023, using image at A361338 *)
  • PARI
    select( {is_A361342(n)=A361338(n)==3}, [1..456]) \\ M. F. Hasler, Apr 08 2023

A361343 Numbers k such that A361338(k) = 4.

Original entry on oeis.org

219, 257, 267, 274, 277, 278, 284, 286, 298, 299, 317, 319, 328, 344, 359, 363, 366, 377, 398, 418, 419, 433, 434, 437, 438, 449, 454, 464, 469, 471, 478, 482, 486, 492, 494, 527, 544, 547, 549, 576, 588, 616, 626, 633, 636, 639, 644, 657, 663, 673, 677, 681, 682, 694, 698, 699, 714, 717, 718, 727, 728, 733, 734, 736, 738, 762, 767, 773, 778, 792
Offset: 1

Views

Author

N. J. A. Sloane, Apr 05 2023

Keywords

Comments

{0, 2, 4, 6} and {0, 2, 6, 8} are by far the most frequent possible outcome for these numbers. Up to 10^4, no number in this sequence ever produces a 1, and 1113 and 1311 are the only terms that can produce a 3, and {919, 1193, 1199, 1357, 1751, 1913, 2373} are the only terms that produce a 7. - M. F. Hasler, Apr 08 2023

Crossrefs

Programs

  • Mathematica
    -1 + Position[#, 4][[All, 1]] &@ Flatten@ Array[Map[Total, Transpose@ ImageData[ColorNegate@ Import["https://oeis.org/A361338/a361338_2.png", "PNG"], "Bit"][[10 # + 1 ;; 10 # + 10, 1 ;; 1000]]] &, 1, 0] (* Michael De Vlieger, Apr 06 2023, using image at A361338 *)
  • PARI
    select( {is_A361343(n)=A361338(n)==4}, [1..800]) \\ M. F. Hasler, Apr 08 2023

A361348 Numbers k such that A361338(k) = 9.

Original entry on oeis.org

3377, 3713, 4779, 5319, 5919, 5981, 7947, 8159, 8839, 9531, 9591, 9883, 10599, 11307, 11339, 11977, 13371, 13377, 13397, 13713, 13969, 14779, 14791, 15319, 15789, 15919, 15933, 15981, 15997, 16393, 16997, 17149, 17183, 17667, 17717, 17733, 17771, 17941, 17947, 17963
Offset: 1

Views

Author

N. J. A. Sloane, Apr 05 2023

Keywords

Crossrefs

Programs

A361344 Numbers k such that A361338(k) = 5.

Original entry on oeis.org

373, 387, 389, 393, 439, 479, 619, 627, 649, 661, 688, 696, 739, 742, 784, 788, 824, 827, 847, 862, 868, 878, 879, 886, 887, 889, 898, 914, 924, 929, 938, 943, 947, 966, 969, 973, 979, 982, 988, 996, 998, 1038, 1066, 1067, 1123, 1127, 1129, 1131, 1137, 1138, 1139, 1143, 1148, 1149, 1162, 1164, 1166, 1168, 1171, 1172, 1174, 1178, 1181, 1183
Offset: 1

Views

Author

N. J. A. Sloane, Apr 05 2023

Keywords

Crossrefs

Programs

A361345 Numbers k such that A361338(k) = 6.

Original entry on oeis.org

719, 1117, 1119, 1147, 1157, 1159, 1167, 1177, 1187, 1189, 1197, 1253, 1317, 1327, 1359, 1373, 1389, 1391, 1453, 1499, 1579, 1599, 1657, 1713, 1717, 1731, 1737, 1747, 1757, 1767, 1769, 1773, 1797, 1799, 1921, 1927, 1933, 1939, 1961, 1963, 1971, 1981, 1991, 1993, 1997, 1999, 2117, 2119, 2157, 2191, 2199, 2217, 2237, 2331, 2457, 2517, 2519
Offset: 1

Views

Author

N. J. A. Sloane, Apr 05 2023

Keywords

Comments

{0, 2, 4, 5, 6, 8} is by far the most frequent possible outcome for the terms in this sequence, in 669 out of the 790 cases up to 10^4. 1373 is the only term up to 10^4 that can produce a 1. - M. F. Hasler, Apr 08 2023

Crossrefs

Programs

A361346 Numbers k such that A361338(k) = 7.

Original entry on oeis.org

1133, 1339, 1387, 1519, 1597, 1719, 1917, 1969, 1973, 1979, 2139, 2177, 2357, 2359, 2577, 2599, 2771, 2939, 2959, 3117, 3119, 3137, 3149, 3169, 3189, 3191, 3437, 3571, 3573, 3589, 3591, 3639, 3657, 3731, 3773, 3797, 3859, 3917, 3929, 3979, 3991, 3999, 4179, 4191, 4359
Offset: 1

Views

Author

N. J. A. Sloane, Apr 05 2023

Keywords

Crossrefs

Programs

Showing 1-10 of 11 results. Next