cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A321304 Triangle T(n,f): the number of bicolored connected cubic graphs on 2n vertices with f vertices of the first color.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 5, 5, 5, 2, 2, 5, 10, 31, 46, 63, 46, 31, 10, 5, 19, 64, 248, 542, 931, 1052, 931, 542, 248, 64, 19, 85, 490, 2382, 7011, 15199, 23405, 27336, 23405, 15199, 7011, 2382, 490, 85, 509, 4595, 27233, 101002, 268675, 523246, 776657, 882321, 776657, 523246, 268675, 101002, 27233, 4595, 509
Offset: 0

Views

Author

R. J. Mathar, Nov 03 2018

Keywords

Comments

These are connected, undirected, simple cubic graphs where each vertex has either the first or the second color. Row n has 2n+1 entries, 0<=f<=2n. The column f=0 (1, 0, 2, 5,...) counts the cubic graphs (A002851). The column f=1 (0, 1, 2, 10, 64, 490...) counts the rooted cubic graphs.

Examples

			The triangle starts:
0 vertices:   1;
2 vertices:   0,  0,   0;
4 vertices:   1,  1,   1,   1,   1;
6 vertices:   2,  2,   5,   5,   5,    2,   2;
8 vertices:   5, 10,  31,  46,  63,   46,  31,  10,   5;
10 vertices: 19, 64, 248, 542, 931, 1052, 931, 542, 248, 64, 19;
		

Crossrefs

Columns f=0, 1, 2 are A002851, A361407, A361408.
Row sums are A361403.
Central coefficients are A361406.
Cf. A294783 (bicolored trees), A321305 (signed edges), A361361 (not necessarily connected).

Formula

T(n,f) = T(n,2n-f).

Extensions

Terms a(49) and beyond from Andrew Howroyd, Mar 11 2023

A361410 Number of cubic graphs on 2n unlabeled vertices rooted at a vertex.

Original entry on oeis.org

0, 1, 2, 11, 68, 510, 4712, 51877, 664520, 9662968, 156490473, 2783955994, 53863486240, 1124886942314, 25206326633070, 603048386506505, 15339533779133582, 413338072569232815, 11760801736217845686, 352342902996056683824
Offset: 1

Views

Author

Andrew Howroyd, Mar 11 2023

Keywords

Crossrefs

Column k=1 of A361361.

A361411 Number of cubic graphs on 2n unlabeled vertices rooted at a pair of indistinguishable vertices.

Original entry on oeis.org

0, 1, 5, 33, 257, 2443, 27682, 363759, 5405697, 89134360, 1609418390, 31525697245, 665263778962, 15039817276939, 362579178545598, 9284375250749758, 251643492565059981, 7197256536139662143, 216621907269166632361, 6844093745422473471562
Offset: 1

Views

Author

Andrew Howroyd, Mar 11 2023

Keywords

Crossrefs

Column k=2 of A361361.

A361404 Triangle read by rows: T(n,k) is the number of graphs with loops on n unlabeled vertices with k loops.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 4, 6, 6, 4, 11, 20, 28, 20, 11, 34, 90, 148, 148, 90, 34, 156, 544, 1144, 1408, 1144, 544, 156, 1044, 5096, 13128, 20364, 20364, 13128, 5096, 1044, 12346, 79264, 250240, 472128, 580656, 472128, 250240, 79264, 12346
Offset: 0

Views

Author

Andrew Howroyd, Mar 11 2023

Keywords

Comments

T(n,k) is the number of bicolored graphs on n nodes with k vertices having the first color. Adjacent vertices may have the same color.

Examples

			Triangle begins:
     1;
     1,    1;
     2,    2,     2;
     4,    6,     6,     4;
    11,   20,    28,    20,    11;
    34,   90,   148,   148,    90,    34;
   156,  544,  1144,  1408,  1144,   544,  156;
  1044, 5096, 13128, 20364, 20364, 13128, 5096, 1044;
  ...
		

Crossrefs

Columns k=0..2 are A000088, A000666(n-1), A303829.
Row sums are A000666.
Central coefficients are A361405.
Cf. A361361 (cubic).

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    row(n) = {my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)*prod(i=1, #p, 1 + x^p[i])); Vecrev(s/n!)}

Formula

T(n,k) = T(n, n-k).

A361362 Number of bicolored cubic graphs on 2n unlabeled vertices.

Original entry on oeis.org

1, 0, 5, 23, 262, 4775, 126026, 4315481, 177939133, 8486268015, 457398466292, 27442206452816, 1812456359735759, 130630783430897459, 10200930403740584232, 857888417749736680977, 77299388952584465682198, 7429004444540543143978901, 758559920648248499878180973, 82006219796827162656265186759, 9357477001574426557631620060473
Offset: 0

Views

Author

Andrew Howroyd, Mar 10 2023

Keywords

Comments

Adjacent vertices may have the same color.

Crossrefs

Row sums of A361361.
Cf. A361403 (connected).

Formula

Euler transform of A361403.

A361409 Number of bicolored cubic graphs on 2n unlabeled vertices with n vertices of each color.

Original entry on oeis.org

1, 0, 1, 5, 66, 1071, 27606, 887305, 34583357, 1562797351, 80177945542, 4597212665432, 291214532031215, 20193430937073303, 1521240318892230748, 123711268485285686123, 10801367759750192440520, 1007762402877770768660697, 100058924666668698411972015, 10533938778032068908299390227, 1172080056205294525370971027435
Offset: 0

Views

Author

Andrew Howroyd, Mar 11 2023

Keywords

Comments

Adjacent vertices may have the same color.

Crossrefs

Central coefficients of A361361.
Showing 1-6 of 6 results.