cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A347420 Number of partitions of [n] where the first k elements are marked (0 <= k <= n) and at least k blocks contain their own index.

Original entry on oeis.org

1, 2, 5, 14, 45, 164, 667, 2986, 14551, 76498, 430747, 2582448, 16403029, 109918746, 774289169, 5715471606, 44087879137, 354521950932, 2965359744447, 25749723493074, 231719153184019, 2157494726318234, 20753996174222511, 205985762120971168, 2106795754056142537
Offset: 0

Views

Author

Alois P. Heinz, Jan 05 2022

Keywords

Examples

			a(3) = 14 = 5 + 5 + 3 + 1: 123, 12|3, 13|2, 1|23, 1|2|3, 1'23, 1'2|3, 1'3|2, 1'|23, 1'|2|3, 1'3|2', 1'|2'3, 1'|2'|3, 1'|2'|3'.
		

Crossrefs

Antidiagonal sums of A108087.

Programs

  • Maple
    b:= proc(n, m) option remember;
         `if`(n=0, 1, b(n-1, m+1)+m*b(n-1, m))
        end:
    a:= n-> add(b(i, n-i), i=0..n):
    seq(a(n), n=0..25);
  • Mathematica
    b[n_, m_] := b[n, m] = If[n == 0, 1, b[n - 1, m + 1] + m*b[n - 1, m]];
    a[n_] := Sum[b[i, n - i], {i, 0, n}];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 11 2022, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=0..n} A108087(n-k,k).
a(n) = 1 + A005490(n).
a(n) = A000110(n) + Sum_{k=1..n} k * A259691(n-1,k).
a(n) = Sum_{k=1..n} (k+1) * A259691(n-1,k).
a(n) = A000110(n) + A350589(n).
a(n) mod 2 = A059841(n).

A361781 A(n,k) is the n-th term of the k-th inverse binomial transform of the Bell numbers (A000110); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, -1, 1, 5, 1, -2, 2, 1, 15, 1, -3, 5, -3, 4, 52, 1, -4, 10, -13, 7, 11, 203, 1, -5, 17, -35, 36, -10, 41, 877, 1, -6, 26, -75, 127, -101, 31, 162, 4140, 1, -7, 37, -139, 340, -472, 293, -21, 715, 21147, 1, -8, 50, -233, 759, -1573, 1787, -848, 204, 3425, 115975
Offset: 0

Views

Author

Alois P. Heinz, Mar 23 2023

Keywords

Examples

			Square array A(n,k) begins:
    1,   1,   1,    1,     1,      1,       1,       1, ...
    1,   0,  -1,   -2,    -3,     -4,      -5,      -6, ...
    2,   1,   2,    5,    10,     17,      26,      37, ...
    5,   1,  -3,  -13,   -35,    -75,    -139,    -233, ...
   15,   4,   7,   36,   127,    340,     759,    1492, ...
   52,  11, -10, -101,  -472,  -1573,   -4214,   -9685, ...
  203,  41,  31,  293,  1787,   7393,   23711,   63581, ...
  877, 162, -21, -848, -6855, -35178, -134873, -421356, ...
		

Crossrefs

Columns k=0-5 give: A000110, A000296, A126617, A346738, A346739, A346740.
Rows n=0-2 give: A000012, A024000, A160457.
Main diagonal gives A290219.
Antidiagonal sums give A361380.
Cf. A108087.

Programs

  • Magma
    T:= func< n,k | (&+[(-k)^j*Binomial(n,j)*Bell(n-j): j in [0..n]]) >;
    A361781:= func< n,k | T(k, n-k) >;
    [A361781(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 12 2024
    
  • Maple
    A:= proc(n, k) option remember; uses combinat;
          add(binomial(n, j)*(-k)^j*bell(n-j), j=0..n)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..10);
    # second Maple program:
    b:= proc(n, m) option remember;
         `if`(n=0, 1, b(n-1, m+1)+m*b(n-1, m))
        end:
    A:= (n, k)-> b(n, -k):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0, BellB[n], Sum[(-k)^j*Binomial[n,j]*BellB[n-j], {j,0,n}]];
    A361781[n_, k_]= T[k, n-k];
    Table[A361781[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 12 2024 *)
  • SageMath
    def T(n,k): return sum( (-k)^j*binomial(n,j)*bell_number(n-j) for j in range(n+1))
    def A361781(n, k): return T(k, n-k)
    flatten([[A361781(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jun 12 2024

Formula

E.g.f. of column k: exp(exp(x) - k*x - 1).
A(n,k) = Sum_{j=0..n} (-k)^j*binomial(n,j)*Bell(n-j).
Showing 1-2 of 2 results.