cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361394 Number of integer partitions of n where 2*(number of distinct parts) >= (number of parts).

Original entry on oeis.org

1, 1, 2, 2, 4, 6, 8, 11, 15, 20, 30, 38, 49, 65, 83, 108, 139, 178, 224, 286, 358, 437, 550, 684, 837, 1037, 1269, 1553, 1889, 2295, 2770, 3359, 4035, 4843, 5808, 6951, 8312, 9902, 11752, 13958, 16531, 19541, 23037, 27162, 31911, 37488, 43950, 51463, 60127, 70229
Offset: 0

Views

Author

Gus Wiseman, Mar 17 2023

Keywords

Examples

			The a(1) = 1 through a(7) = 11 partitions:
  (1)  (2)   (3)   (4)    (5)     (6)     (7)
       (11)  (21)  (22)   (32)    (33)    (43)
                   (31)   (41)    (42)    (52)
                   (211)  (221)   (51)    (61)
                          (311)   (321)   (322)
                          (2111)  (411)   (331)
                                  (2211)  (421)
                                  (3111)  (511)
                                          (2221)
                                          (3211)
                                          (4111)
		

Crossrefs

The complement is counted by A360254, ranks A360558.
These partitions have ranks A361395.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, reverse A058398.
A067538 counts partitions with integer mean, strict A102627.
A116608 counts partitions by number of distinct parts.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, `if`(t>=0, 1, 0),
         `if`(i<1, 0, add(b(n-i*j, i-1, t+`if`(j>0, 2, 0)-j), j=0..n/i)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..50);  # Alois P. Heinz, Mar 19 2023
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],2*Length[Union[#]]>=Length[#]&]],{n,0,30}]