cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361455 Triangle read by rows: T(n,k) is the number of simple digraphs on labeled n nodes with k strongly connected components.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 18, 21, 25, 0, 1606, 1173, 774, 543, 0, 565080, 271790, 122595, 59830, 29281, 0, 734774776, 229224750, 70500705, 25349355, 10110735, 3781503, 0, 3523091615568, 685793359804, 138122171880, 35130437825, 11002159455, 3767987307, 1138779265
Offset: 0

Views

Author

Andrew Howroyd, Mar 16 2023

Keywords

Examples

			Triangle begins:
  1;
  0,         1;
  0,         1,         3;
  0,        18,        21,       25;
  0,      1606,      1173,      774,      543;
  0,    565080,    271790,   122595,    59830,    29281;
  0, 734774776, 229224750, 70500705, 25349355, 10110735, 3781503;
  ...
		

Crossrefs

Column k=1 is A003030.
Main diagonal is A003024.
Row sums are A053763.
The unlabeled version is A361582.
Cf. A189898 (weak components), A361269 (loops allowed), A361591.

Programs

  • PARI
    Z(p, f)={my(n=serprec(p, x)); serconvol(p, sum(k=0, n-1, x^k*f(k), O(x^n)))}
    G(e, p)={Z(p, k->1/e^(k*(k-1)/2))}
    U(e, p)={Z(p, k->e^(k*(k-1)/2))}
    DigraphEgf(n, e)={sum(k=0, n, e^(k*(k-1))*x^k/k!, O(x*x^n) )}
    T(n)={my(e=2); [Vecrev(p) | p<-Vec(serlaplace(U(e, 1/G(e, exp(y*log(U(e, 1/G(e, DigraphEgf(n, e)))))))))]}
    { my(A=T(6)); for(i=1, #A, print(A[i])) }

Formula

T(n,k) = A361269(n,k)/2^n.