A361455 Triangle read by rows: T(n,k) is the number of simple digraphs on labeled n nodes with k strongly connected components.
1, 0, 1, 0, 1, 3, 0, 18, 21, 25, 0, 1606, 1173, 774, 543, 0, 565080, 271790, 122595, 59830, 29281, 0, 734774776, 229224750, 70500705, 25349355, 10110735, 3781503, 0, 3523091615568, 685793359804, 138122171880, 35130437825, 11002159455, 3767987307, 1138779265
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 1, 3; 0, 18, 21, 25; 0, 1606, 1173, 774, 543; 0, 565080, 271790, 122595, 59830, 29281; 0, 734774776, 229224750, 70500705, 25349355, 10110735, 3781503; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50).
Crossrefs
Programs
-
PARI
Z(p, f)={my(n=serprec(p, x)); serconvol(p, sum(k=0, n-1, x^k*f(k), O(x^n)))} G(e, p)={Z(p, k->1/e^(k*(k-1)/2))} U(e, p)={Z(p, k->e^(k*(k-1)/2))} DigraphEgf(n, e)={sum(k=0, n, e^(k*(k-1))*x^k/k!, O(x*x^n) )} T(n)={my(e=2); [Vecrev(p) | p<-Vec(serlaplace(U(e, 1/G(e, exp(y*log(U(e, 1/G(e, DigraphEgf(n, e)))))))))]} { my(A=T(6)); for(i=1, #A, print(A[i])) }
Formula
T(n,k) = A361269(n,k)/2^n.