cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361459 Number of partitions p of n such that 5*min(p) is a part of p.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 12, 15, 23, 31, 44, 58, 82, 105, 142, 185, 244, 312, 409, 516, 664, 837, 1063, 1328, 1674, 2074, 2588, 3194, 3952, 4847, 5964, 7270, 8884, 10786, 13104, 15832, 19147, 23027, 27709, 33203, 39776, 47476, 56661, 67382, 80108, 94960, 112494, 132919, 156965
Offset: 1

Views

Author

Seiichi Manyama, May 17 2023

Keywords

Comments

From Vaclav Kotesovec, Jun 19 2025: (Start)
In general, for m>1, if g.f. = Sum_{k>=0} x^(m*k) / Product_{j>=k} (1 - x^j), then A000041(n) - a(n) ~ Pi * (m-1) * exp(Pi*sqrt(2*n/3)) / (3*2^(5/2)*n^(3/2)).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*n*sqrt(3)) * (1 - (sqrt(3/2)/Pi + (m - 23/24)*Pi / sqrt(6)) / sqrt(n)). (End)

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i>n, 0, b(n, i+1)+b(n-i, i)))
        end:
    a:= n-> add(b(n-6*i, i), i=1..n/6):
    seq(a(n), n=1..60);  # Alois P. Heinz, May 17 2023
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i > n, 0, b[n, i+1] + b[n-i, i]]];
    a[n_] := Sum[b[n - 6 i, i], {i, 1, n/6}];
    Array[a, 60] (* Jean-François Alcover, May 30 2024, after Alois P. Heinz *)
  • PARI
    my(N=60, x='x+O('x^N)); concat([0, 0, 0, 0, 0], Vec(sum(k=1, N, x^(6*k)/prod(j=k, N, 1-x^j))))

Formula

G.f.: Sum_{k>=1} x^(6*k)/Product_{j>=k} (1-x^j).
From Vaclav Kotesovec, Jun 19 2025: (Start)
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)*n) * (1 - (sqrt(3/2)/Pi + 121*Pi/(24*sqrt(6))) / sqrt(n)).
A000041(n) - a(n) ~ 5 * Pi * exp(Pi*sqrt(2*n/3)) / (3 * 2^(5/2) * n^(3/2)). (End)